
Behaviour, Interaction and Dynamics?

Roberto Bruni1, Hernán Melgratti2, and Ugo Montanari1

1 Dipartimento di Informatica, Università di Pisa, Italy
2 Departamento de Computación, FCEyN, Universidad de Buenos Aires - Conicet,

Argentina

Abstract. The growth and diffusion of reconfigurable and adaptive sys-
tems motivate the foundational study of models of software connectors
that can evolve dynamically, as opposed to the better understood no-
tion of static connectors. In this paper we investigate the interplay of
behaviour, interaction and dynamics in the context of the BIP com-
ponent framework, here denoted BI(P), as we disregard priorities. We
introduce two extensions of BIP: 1) reconfigurable BI(P) allows to re-
configure the set of admissible interactions, while preserving the set of
interacting components; 2) dynamic BI(P) allows to spawn new compo-
nents and interactions during execution. Our main technical results show
that reconfigurable BI(P) is as expressive as BI(P), while dynamic BI(P)
allows to deal with infinite state systems. Still, we show that reachability
remains decidable for dynamic BI(P).

1 Introduction

Recent years have witnessed an increasing interest about a rigorous modelling
of (different classes of) connectors. The term connector, as used here, has been
coined within the area of component-based software architectures, to name enti-
ties that can regulate the interaction of a collection of components [15]. This has
led to the development of different mathematical frameworks that are used to
specify, design, analyse, compare, prototype and implement suitable connectors.
Our previous efforts have been focused at unifying different frameworks, in par-
ticular, the BIP component framework [2], Petri nets with boundaries [16] and
the algebras of connectors [7,1] based on the tile model [12]. In [8] we have shown
that BIP without priorities, written BI(P) in the following, is equally expressive
as nets with boundaries. Thanks to the correspondence results in [16,10], we
can define an algebra of connectors as expressive as BI(P), where a few basic
connectors can be composed in series and parallel to generate any BI(P) system.

All above approaches deal with systems that have static structures, i.e., sys-
tems in which the possible interactions among components are all defined at
design time and remain unchanged during runtime. Nevertheless, when shifting
to connectors for systems that adapt their behaviour to changing environments,

? Research supported by the EU Integrated Project 257414 ASCENS, the Italian
MIUR Project CINA (PRIN 2010/11), ANPCyT Project BID-PICT-2008-00319,
and EU FP7-project MEALS 295261.

2

the situation is less well-understood. For example, approaches based on mobile
calculi (like the π-calculus [14]) are not suited, because there the notion of con-
nector / component is lost. In fact, a general and uniform theory for dynamic
connectors is still lacking. On the one hand, static structures of connectors can
be studied and executed efficiently. On the other hand, systems that can tra-
verse a large or infinite number of connector configurations are better dealt with
concise computational models that are tailored to dynamic structures.

Some recent progress has been done in [6], where Dy-BIP is proposed. We
remind that an ordinary BIP component is defined by a set of ports P and a
finite automaton whose transitions carry subsets of P as labels. An ordinary BIP
system consists of a finite number of components (fixing the “Behaviour”) whose
ports are disjoint, together with a set of admissible synchronisations between the
transitions of components (fixing the “Interaction”). Neither the set of compo-
nents, nor the set of interactions can change over time. In contrast to BIP, the
set of interactions can change dynamically in Dy-BIP, but this is obtained by ad-
hoc design choices. As a consequence, the definition of Dy-BIP systems can be
error-prone or lead to incomplete specifications unless the complex methodology
outlined in [6] is adopted.

In order to contribute to the development of a general theory for dynamic
connectors, in this paper we study two other extensions of the BI(P) framework
with different degrees of “dynamism” that allow enhanced conciseness, modu-
larity and expressiveness.

As a first step, we focus on a reconfigurable version of BI(P), analogous to
but simpler than Dy-BIP. A reconfigurable BI(P) system allows for the dynamic
modification of interactions among components, i.e., the set of available inter-
actions changes as a side-effect of an interaction between components. Our first
result proves that any reconfigurable BI(P) system is equivalent to an ordinary
BI(P) system. This result is achieved by introducing a “controller” component
for each interaction that can be added or removed at run-time. Roughly, the
controller keeps track of whether the managed interaction is currently available
or not and forces the components willing to use that interaction to synchronise
also with the controller. This mapping shows that the reconfiguration capabil-
ities provided by reconfigurable BI(P) do not increase the expressive power of
BI(P). In fact, reconfigurable BI(P) only provides a more compact representa-
tion of ordinary systems, while ordinary BI(P) representations may require an
exponential blow up in the number of components (it requires one controller for
each possible interaction, and the interaction are subsets of ports). The crux of
the proof is the fact that the set of controller components can be defined stat-
ically. In fact, the interfaces of components in reconfigurable BI(P) are static,
i.e., the set of available ports in every component is fixed. As a consequence, the
set of all possible interactions in a system are determined at design time (despite
the fact that they can be enabled/disabled at run-time).

Our next step is to explore situations in which the interfaces of the com-
ponents may change dynamically (i.e., to support the creation/elimination of
ports). This requirement also imposes the necessity of handling interactions that

3

can be created/removed dynamically, as in reconfigurable BI(P). We take as an
inspiring example the notion of correlation sets in web services [17,13], that is
used to keep separate sessions between clients and servers. In these cases, when
a partner call is made, then an instance of the session is initialised with suit-
able correlation data (e.g., specific message fields) gathered for the partner. To
this aim we exploit coloured tokens, where the colours are freshly created ses-
sion identifiers. This way, we do not need to replicate the ports and structure of
components, instead we keep all the coloured tokens within the same instance
of the component, distributed along its states: as in general it can happen that
two or more replicas are in the same state, then it is possible that two or more
coloured tokens mark the same state at the same time. An interaction is possible
only when all the involved components carry correlated colours, i.e., identifiers
for the same session. In fact, while session identifiers are created locally to each
component (e.g., s1 in a first component and s2 in a second component), a new
interaction is also created that correlates them (e.g., s1s2). Possibly many ses-
sions are opened with the same partners involved. In subsequent interactions,
correlation tokens are then exploited to identify the session that interaction is
part of. When the session ends, the correlation tokens are discarded. At the
beginning, when the system is initialised, we assume that all components carry
correlated tokens, i.e., that they are all part of the same session. Correspondingly,
we introduce an extension of BI(P), called dynamic BI(P), in which component
instances and new interactions can be added/removed dynamically. In this case
we obtain systems that are possibly infinite state and more expressive than or-
dinary BI(P) systems. However, our second main result shows that reachability
is decidable for dynamic BI(P).

Structure of the paper. Section 2 recalls the basics of BI(P) systems. Section 3
introduces reconfigurable BI(P) systems and shows that they are as expressive as
ordinary BI(P) systems. Section 4 introduces dynamic BI(P) systems and shows
their correspondence with Place/Transition (P/T) Petri nets. Due to space lim-
itation and to the fact that P/T Petri nets are mainly used here as a technical
tool for the decidability proof, we assume the reader has some familiarity with
P/T Petri nets and refer to the standard literature [11] otherwise. Both re-
configurable and dynamic BI(P) systems are illustrated over small motivating
examples. Section 5 gives some concluding remarks.

2 The BIP component framework, and BI(P)

BIP [2] is a component framework that exploits a three-layered architecture:
1) the lower level is called Behaviour and it fixes the activities of individual
atomic components; 2) the middle layer is called Interaction and it defines the
handshaking mechanisms between components; and 3) the top level is called Pri-
ority and it assigns a partial order of preferences to the admissible interactions.
This section recalls the formal definition of BIP using the notation from [4]. Here
we disregard priorities and write BI(P) to avoid confusion.

4

The lower layer consists of a set of atomic components with ports. The sets
of ports of components are pairwise disjoint, i.e., each port is uniquely assigned
to a component. Components are automata whose transitions are labelled by
sets of their ports.

Definition 1 (Component). A component B = (Q,P,→) is a transition sys-
tem where Q is a set of states (ranged over by p, q, . . .), P is a set of ports (ranged
over by a, b, . . .), and →⊆ Q× 2P ×Q is the set of labelled transitions.

As usual, we write q
a−→ q′ to denote the transition (q, a, q′) ∈→. We say that

a is enabled in q, denoted q
a−→, iff there exists q′ s.t. q

a−→ q′. We assume that

for all q, q′ it holds q
∅−→ q′ iff q = q′.

The second layer consists of connectors that specify the allowed interactions
between components.

Definition 2 (Interaction). Given a set of ports P , an interaction over P is
a non-empty subset a ⊆ P .

We write a1a2 . . . an for the interaction {a1, a2, . . . , an} and a ↓Pi
for the

projection of a ⊆ P over the set of ports Pi ⊆ P , i.e., a ↓Pi
= a ∩ Pi.

Definition 3 (BI(P) system). A BI(P) system B = γ(B1, . . . , Bn) is the
composition of a finite set {Bi}ni=1 of transitions systems Bi = (Qi, Pi,→i)
such that their sets of ports are pairwise disjoint, i.e., Pi ∩ Pj = ∅ for i 6= j,
parametrized by a set γ ⊂ 2P of interactions over the set of ports P =

⊎n
i=1 Pi.

We call P the underlying set of ports of B, written ι(B).

The semantics of a BI(P) system γ(B1, . . . , Bn) is given by the transition
system (Q,P,→γ), with Q = ΠiQi, P =

⊎n
i=1 Pi and →γ⊆ Q × 2P × Q is the

least set of transitions satisfying the following inference rule

a ∈ γ ∀i ∈ 1..n : qi
a↓Pi−−−→ q′i

(q1, . . . , qn)
a−→γ (q′1, . . . , q

′
n)

Example 1. Consider the BI(P) system shown in Fig. 1, which contains a compo-
nent Server that sequentially interacts with two clients Client1 and Client2.
The Server starts a connection with Clienti thanks to the interaction sici.
Once the session is initiated, the server and the connected client synchronise
over the interaction abi. The session ends when the server and the connected
client perform eidi. Note that the server has dedicated ports for handling the
connections of different clients (si and ei), but it interacts analogously with all
of them. The next section introduces an extension of BI(P) that allows for a
more compact description of this kind of systems.

5

{{s1, c1}, {s2, c2}, {e1, d1}, {e2, d2}, {a, b1}, {a, b2}}

•
a

•
s1

•
e1

•
s2

•
e2

a ::
e1

77
C1S

s2

''
s1

ww DS
add

e2

gg
C2S

•
b1

•
c1

•
d1

c1

''
DC1

b1dd
d1

gg
CC1

•
b2

•
c2

•
d2

c2

''
DC2

b2dd
d2

gg
CC2

Server Client1 Client2

Fig. 1. A simple BI(P) system

3 Reconfigurable BI(P)

Our first extension is concerned with the possibility of enabling and disabling
specific interactions dynamically, as proposed in an internal document of the
ASCENS project. An interaction a can be enabled/disabled when all components
involved in the interaction a agree to do so. After a is enabled, it can be used
as an ordinary interaction until it gets disabled. Transitions in a reconfigurable
BI(P) component are decorated with either (i) ε for ordinary actions over (a set
of) ports (like the actions of ordinary BI(P) components), (ii) + to add a new
interaction, and (iii) − to remove an interaction.

Definition 4 (Reconfigurable Component). Let P be a set of ports. A re-
configurable component B = (Q,P,−−�) is a transition system where Q is a set
of states, P ⊂ P is a finite set of ports, and −−�⊆ Q× 2P ×{+,−, ε}×Q is the
set of labelled transitions such that (q, a, ρ, q′) ∈−−� implies:

1. if ρ = ε then a ∈ 2P ;
2. if ρ ∈ {+,−} then a ∩ P 6= ∅.

The annotation ρ indicates if the interaction a must be added (+) to the set
γ of global interactions, be removed (−) from γ, or be already present (ε) in
γ. Condition (1) states that the ports involved in any ordinary transition (i.e.,
ρ = ε) are ports of the component, i.e., a ∈ 2P . A transition that adds/removes
a global interaction a may also refer to ports belonging to other components
(Condition 2).

We write q
aρ
−−−−� q′ to denote the transition (q, a, ρ, q′) ∈−−�. We say that

a is enabled in q, denoted q
a
−−−�, iff there exists q′ s.t. q

aε
−−−� q′. We assume

that for all q, q′ it holds q
∅ε
−−−−� q′ iff q = q′. Given a set of ports P , we write

a#P if a ∩ P = ∅.

Definition 5 (Reconfigurable BI(P) system). A reconfigurable BI(P) sys-
tem B = γ(B1, . . . , Bn) is the composition of a finite set {Bi}ni=1 of reconfig-
urable components Bi = (Qi, Pi,−−�i) such that their sets of ports are pairwise

6

∅

•
a

ab1+,ab2+

''DS
add

ab1−,ab2−

gg
CS

•
b1

ab1+

''
DC1

b1dd
ab1−

gg
CC1

•
b2

ab2+

''
DC2

b2dd
ab2−

gg
CC2

Server Client1 Client2

Fig. 2. A simple reconfigurable BI(P) system

a ∈ γ ∀i ∈ 1..n : qi
a↓Pi

ε

−−−−−−� q′i

γ(q1, . . . , qn)
a
−−−� γ(q′1, . . . , q

′
n)

[int]

a ∈ 2P r γ ¬(a#Pi) =⇒ qi
a+
−−−−� q′i (a#Pi) =⇒ q′i = qi γ′ = γ ∪ {a}

γ(q1, . . . , qn)
a
−−−� γ′(q′1, . . . , q

′
n)

[add]

a ∈ γ ¬(a#Pi) =⇒ qi
a−
−−−−� q′i (a#Pi) =⇒ q′i = qi γ′ = γ r {a}

γ(q1, . . . , qn)
a
−−−� γ′(q′1, . . . , q

′
n)

[del]

Fig. 3. Operational semantics of reconfigurable BI(P) systems

disjoint, i.e., Pi ∩ Pj = ∅ for i 6= j, parametrized by a set γ ⊂ 2P . We call
P =

⊎n
i=1 Pi the underlying set of ports of B, written ι(B).

Example 2. The client/server scenario introduced in Example 1 can be mod-
elled as the reconfigurable BI(P) system depicted in Fig. 2. Now, the server and
the clients have the transitions abi+ and abi− that respectively allow for the
dynamic enabling/disabling of the interaction abi. In this case, the connection
of a client to a server is modelled by the dynamic enabling of the interaction
abi. Analogously, the disconnection is modelled as the dynamic disabling of the
interaction abi.

The semantics of a reconfigurable BI(P) system B = γ(B1, . . . , Bn) with
ι(B) = P and γ ⊆ 2P is given by the transition system (Q,−−�) where

– Q = 2P ×ΠiQi (we write γ(q1, . . . , qn) for 〈γ, 〈q1, . . . , qn〉〉 ∈ Q), and
– −−�⊆ Q× 2P ×Q is the least set of transitions satisfying the inference rules

in Fig. 3.

Each state of the transition system keeps, not only the states of all com-
ponents but also, the set γ of all enabled interactions. Rule [int] stands for
ordinary interactions and it is analogous to the inference rule for ordinary BI(P)

7

systems. Rule [add] accounts for the addition of a new global interaction a to
the set of enabled interactions γ. Note that all components affected by the in-
teraction a, i.e., the ones that have ports in a (condition a#Pi), need to agree
on the addition of the new interaction a (i.e., all of them perform the transition
a+
−−−−�). Remaining components do not move. Rule [del] specifies the removal
of an enabled interaction and is analogous to [add].

Example 3. Consider the reconfigurable BI(P) system in Example 2. The ini-
tial state in which no connection has been established is given by the term
∅(DS , DC1

, DC2
). In this state, the system can start a session between the Server

and either Client1 or Client2. Assuming that a session with Client1 is estab-
lished, then the system can move as follows

∅(DS , DC1
, DC2

)
ab1+−−−−−� s with s = {ab1}(CS , CC1

, DC2
)

After session initiation, Server and Client1 can repeatedly synchronise with
interaction ab1 as any ordinary BI(P) system, i.e.,

s
ab1−−−−� s

ab1−−−−� . . .
ab1−−−−� s

At some point, both Server and Client1 decide to close the session and the
system returns to the initial state by removing the interaction ab1, i.e.,

s
ab1−−−−−−� ∅(DS , DC1 , DC2)

3.1 Reconfigurable BI(P) in BI(P)

This section shows that Reconfigurable BI(P) is as expressive as BI(P), i.e., that
adding the possibility of dynamically changing the set of interactions does not
increase the expressiveness, even if a price is paid in terms of the combinatorial
explosion of global states.

We start by introducing some auxiliary notation and definitions.
Let B = (Q,P,−−�) be a reconfigurable component. The set of reconfigurable

interactions of B is defined as follows

R(B) = {a | (q, a, ρ, q′) ∈−−� and ρ 6= ε}

For any reconfigurable interaction of a BI(P) component, i.e., a ∈ R(B), we
add two additional ports in the encoded component, which are denoted by ãB+
and ãB−. We remark that we add some decoration to the interaction a in order
to avoid port clashes between the different components of a system. Note that
the same dynamic interaction may appear in different components of a system
(e.g., ab1 and ab2 in Fig. 2) and we need to ensure that a port appears in one
component at most. Although different choices for decoration would be possible,
we will use the following in the rest of the paper.

ãB = (a ∩ P) ∪ {p̃ | p ∈ ar P}.

8

•
a

•
ab̃1+ •

ab̃2+ •
ab̃1− •

ab̃2−

ab̃1+,ab̃2+

''DS
add

ab̃1−,ab̃2−

gg
CS

(a) Component Server

•
a

•
a+

•
a−

a+

''disa
add

a−

gg
ena

(b) Controller Ca

Fig. 4. Encoding reconfigurable BI(P) in BI(P)

We write R̃(B) for the set of all decorated reconfigurable interactions, i.e.,

R̃(B) = {ãB | a ∈ R(B)}. For example, ˜R(Server) = {ab̃1 , ab̃2}.
The notion of reconfigurable interaction is straightforwardly extended to re-

configurable BI(P) systems. Let B = γ(B1, . . . , Bn) be a reconfigurable BI(P)
system, then the set of reconfigurable interactions is defined as

R(B) =
⋃

1≤i≤n

R(Bi).

Definition 6. Let B = (Q,P,−−�) be a reconfigurable component. The corre-

sponding BI(P) component [[B]] is (Q,P ∪ (R̃(B) × {+,−}),−→) with −→ defined
such as (q, a, q′) ∈−→ iff

– (q, a, ρ, q′) ∈−−� and ρ = ε; or

– (q, a′, ρ, q′) ∈−−�, ρ 6= ε and a = (ã′
B
, ρ)

Figure 4(a) shows the BI(P) component corresponding to the reconfigurable
component Server depicted in Fig. 2. For simplicity, we write ãBρ for a port
(ãB , ρ), e.g., we write ab̃1+ instead of (ab̃1,+). Note that we extend the inter-
face of the component by adding two ports for each reconfigurable interaction,
one for signalling the addition of the interaction and the other for the removal.
Besides, the transition relation of the component remains unchanged but transi-
tions corresponding to dynamic interactions are renamed to use the added ports.

The following result states a correspondence between the behaviour of a
reconfigurable component and its encoded version.

Lemma 1. Let B = (Q,P,−−�) be a reconfigurable component and [[B]] =

(Q,P,−→) its encoded version. Then, q
aρ
−−−−� q′ if and only if

– ρ = ε and q
a−→ q′, or

– ρ 6= ε and q
ãBρ−−→ q′

Proof. It follows directly from the definition of [[B]].

We now address the encoding of the behaviour of reconfigurable interactions.
We will associate any reconfigurable interaction with a BI(P) component that
models the dynamics of an interaction that can be dynamically enabled and
disabled.

9

Definition 7. Let a be an interaction. A controller for a is the BI(P) component
Ca = (QCa

, PCa
,−→) defined in Fig. 4(b).

Note that the net Ca has two places, one for an enabled interaction, named
aen, and the other for a disabled one, named adis. The only possible transition
for a disable interaction is the enabling (i.e., a+). After being enabled, the in-
teraction can be used as a usual one (a) until it is disabled (a−). We remark
that each of these behaviours is observed over a dedicated port.

Definition 8. Let B = γ(B1, . . . , Bn) be a reconfigurable BI(P) system with
R(B) = {a0, . . . , aj}. The corresponding BI(P) system is defined as follows

[[γ(B1, . . . , Bn)]] = [[γ]]([[B1]], . . . , [[Bn]],Ca0 , . . . ,Caj)

where
[[γ]] = (γ rR(B)) ∪ (

⋃
a∈R(B),ρ∈{ε,+,−}

{[[a]]ρ})

with

[[a]]ρ =

{
{aρ} ∪ {ãBiρ | 1 ≤ i ≤ n and a ∈ R(Bi)} if ρ ∈ {+,−}
{a} ∪ {p | 1 ≤ i ≤ n and p ∈ a ↓Pi

} if ρ = ε

Moreover, any state γ(q1, . . . , qn) of B will be associated with a state [[γ(q1, . . . , qn)]]
of [[B]] where

[[γ(q1, . . . , qn)]] = (q1, . . . , qn, s0, . . . , sj)

with

si =

{
enai if ai ∈ γ
disai if ai 6∈ γ

Example 4. The reconfigurable system introduced in Example 2 is encoded as
the BI(P) system shown in Fig. 5, which contains five components: the encoded
versions of the components Server, Client1 and Client2, and the two interac-
tion controllers (i.e., one for each reconfigurable interaction ab1 and ab2). The
set γ contains six interactions, three for each reconfigurable interaction. The ini-
tial state of the system in Example 2 corresponds to (DS , DC1 , DC2 , ab1dis, ab2dis).
Then, the transition that starts a session between Server and Client1 is simu-
lated by

(DS , DC1
, DC2

, ab1dis, ab2dis)
{ab1+,ab̃1+,̃ab1+}−−−−−−−−−−−→γ (CS , CC1

, DC2
, ab1en, ab2dis)

The synchronisation between Server and Client1 with the interaction ab1 is

(CS , CC1
, DC2

, ab1en, ab2dis)
{ab1,a,b1}−−−−−−→γ (CS , CC1

, DC2
, ab1en, ab2dis)

Similarly, Server and Client1 jointly disconnect with the following transition

(CS , CC1
, DC2

, ab1en, ab2dis)
{ab1−,ab̃1−,̃ab1−}−−−−−−−−−−−→γ (DS , DC1

, DC2
, ab1dis, ab2dis)

10

γ = {{ab1, a, b1}, {ab1+, ab̃1+, ãb1+}, {ab1−, ab̃1−, ãb1−}
{ab2, a, b2}, {ab2+, ab̃2+, ãb2+}, {ab2−, ab̃2−, ãb2−}}

•
a

•
ab̃1+ •

ab̃2+ •
ab̃1− •

ab̃2−

ab̃1+,ab̃2+

''DS
add

ab̃1−,ab̃2−

gg
CS

•
b1

•
ãb1+

•
ãb1−

ãb1+

''
DC1

b1dd
ãb1−

gg
CC1

•
b2

•
ãb2+

•
ãb2−

ãb2+

''
DC2

b2dd
ãb2−

gg
CC2

Server Client1 Client2

•
ab1 •

ab1+ •
ab1−

ab1+

''ab1dis
ab1dd

ab1−

gg
ab1en

•
ab2 •

ab2+ •
ab2−

ab2+

''ab2dis
ab2dd

ab2−

gg
ab2en

Cab1 Cab2

Fig. 5. A simple reconfigurable BI(P) system encoded in ordinary BI(P)

As illustrated by the above example, the transitions of a reconfigurable BI(P)
system and its corresponding BI(P) system are in one-to-one correspondence, as
formalised by the following result.

Theorem 1 (Correspondence). Let B = γ(B1, . . . , Bn) be a reconfigurable

BI(P) system with R(B) = {a0, . . . , aj}. Then, γ(q1, . . . , qn)
a
−−−� γ′(q′1, . . . , q

′
n)

iff ∃b ∈ {a, γa, γa+, γa−} s.t. [[γ(q1, . . . , qn)]]
b−→[[γ]] [[γ′(q′1, . . . , q

′
n)]] .

Proof. ⇒) By case analysis on the derivation of γ(q1, . . . , qn)
a
−−−� γ′(q′1, . . . , q

′
n).

⇐) Follows by case analysis on the shape of a.

4 Dynamic BI(P)

In this section we further extend BI(P) by allowing the dynamic replication of
components as result of the interaction of existing components. The idea is that
upon certain interactions, where each involved component forks an instance of
itself with some given initial state, some sort of session is established among
(all and only) the spawned replicas that can thus interact in a sandboxed way,
isolated from the rest of the system. For example, this is useful when the same
server component must serve a possibly unbounded number of client requests
separately but concurrently. As another example, some form of publish-subscribe
mechanism can also be represented, where each subscriber has a dedicated no-
tification handler. As explained in the Introduction, the mechanism underlying

11

dynamic BI(P) resembles, to some extent, the use of correlation tokens in web
service computing.

Technically, we rely on an infinite set of port names P ranged over by a, b, . . .,
an infinite set of port variable names X ranged over by x, y, . . ., and an infinite
set of state names Q ranged over by p, q, We assume P, Q and X pairwise
disjoint. As in general an interaction is related to a specific session, we some-
times decorate ports and interactions with specific correlation tokens as their
subscripts. For example, for a = ab we write ac for acbc.

Definition 9 (Dynamic Component). A dynamic component is a tuple B =
(Q,P,→) where Q ⊂ Q is a set of places, P ⊂ P is a set of ports, and → is a
finite set of transitions, each having one of the following shapes:

– q(x)
ax−→ q′(x), i.e., (a coloured version of) a BI(P) transition;

– q(x)
axy+−−−→ q′(x) ⊕ q′′(y), i.e., a port creation;

– q(x)
x−−−→ ∅, i.e., a port removal;

– q(x)
x−→ q′(x), i.e., an interaction over a dynamically created port.

Ports that appear in labels of the form ax are parametric to the correlation
token and are called static ports; the other ports are called dynamic. We assume
static ports cannot be used as correlation tokens. In the following we denote by
Px the set of static ports of P , by Pa the set of static ports in P parametrized
by the token a and by δ(P) the set of dynamic ports. For example, if P = {a, b}
with a static and b dynamic, then Pc = {ac}. Note that if all transitions have

the form q(x)
ax−→ q′(x) then B is essentially an ordinary BI(P) component.

The current state of a dynamic component B = (Q,P,→) takes the form
〈P, f〉 with P ⊂ P defining the current ports of the component (that includes
opened sessions) and f : Q → 2P such that f(q1) ∩ f(q2) = ∅ for q1 6= q2.
The function f represents the current internal state of the component replicas.
For example, if f(q) = {a, b} then there are two replicas of the component,
one involved in session a and one in b both with current state q. The condition
f(q1) ∩ f(q2) = ∅ for q1 6= q2 guarantees that each replica is associated with a
different session and that to each session corresponds exactly one state.

As a matter of notation we denote f ⊕ p(a) the function defined as

(f ⊕ p(a))(q) =

{
f(q) if q 6= p

f(q) ∪ {a} if q = p

Remark 1. Initially there is only one session opened for each component, i.e.,
for each component there is only one state p such that f(p) 6= ∅ and such f(p)
must be a singleton. To shorten the notation but without loss of generality, we
shall assume that such initial session identifier is void, i.e. f(p) = {•} and omit
the corresponding port • from the drawing of components.

The operational semantics of components is given by the three rules in Fig. 6.
The first rule ([Cint]) deals with both: i) the case of an ordinary interaction

aa (here coloured by the token a); and ii) the case of a dynamic interaction over
the session associated with a.

12

q(x)
α−→ q′(x) a ∈ δ(P) α ∈ {ax, x}

〈P, q(a)⊕ f〉 α{a/x}−−−−→ 〈P, q′(a)⊕ f〉
[Cint]

q(x)
axy+−−−→ q′(x)⊕ q′′(y) a ∈ δ(P) b 6∈ P

〈P, q(a)⊕ f〉 aab+−−−→ 〈P ∪ {b} ∪ Pb, q
′(a)⊕ q′′(b)⊕ f〉

[Copen]

q(x)
x−−−→ ∅ a ∈ δ(P)

〈P, q(a)⊕ f〉 a−−−→ 〈P r ({a} ∪ Pa), f〉
[Cclose]

Fig. 6. Operational semantics of dynamic components

The second rule ([Copen]) is the most complex one, as it deals with compo-
nent spawning and port creation. Here the freshly created session identifier is b,
which is then used as a fresh dynamic port, together with suitable instances Pb

of the static ports of the component. The spawned instance of the component
has initial state q′′(b). Ports in Pb will allow the spawned instance of the compo-
nent to interact on static ports with some other spawned components that are
part of the same session. Moreover, the spawned instance of the component will
be able to interact on the port b by synchronising with all the other spawned
components that are part of the same session. Note that although the token b

has been created within the session a, such information is not maintained in the
state, i.e., sessions a and b will run independently.

Finally, the third rule ([Cclose]) deals with session closure, where the token
a and all the ports {a} ∪ Pa associated with the closed session a are discarded.

Example 5. Consider a server component that interacts with a possibly un-
bounded number of clients by keeping different/separate sessions. Any session
starts with a client request for a new connection. After the initial connection,
each client synchronises with the server by using a dedicated, private port un-
til the client disconnects from the server. This behaviour can be modelled as
the component depicted in Fig. 7(a). We rely on the standard graphical repre-
sentation of coloured Petri nets, in which places are represented by circles and
transitions are drawn as rectangles connected to their pre and post-set by direct
arcs which are decorated with the colours of the involved tokens. In addition,
we show the ports of the component as bullets drawn on the boundaries, like in
BIP notation. The component in Fig. 7(a) has one static port cnt, two places
accept and open with the following three transitions:

– t0 = accept(x)
cntx y+−−−−−→ accept(x)⊕ open(y): if the server can accept a new

connection (i.e., a token can be consumed from the place accept), then it
performs the action cnt that creates a new dynamic port (to be associated
with the symbol y). After performing this action, the server will still accept
new connections because the token x is put back to the place accept. Now,
the component has a new session (i.e., a dedicated port) for interacting with

13

cnty+
x
**

y

��

•cnt

x
nn

accept

x --

x

��

open x
x

jj

x−

(a) Server

reqy+

y

��

x
**

•
req

x
nn

start

x ,,

x

��

run x
x

jj

x−

(b) Client

Fig. 7. Two dynamic components

the recently connected client as represented by the token y containing the
fresh created port name in the place open.

– t1 = open(x)
x−→ open(x): For any open session x, the server can repeatedly

perform an action on the corresponding dynamic port. This transition does
not alter the set of ports of the component.

– t2 = open(x)
x−−−→ ∅: An already opened session x is closed after performing

the corresponding action x−, that synchronises with a request from the client
to close the same session.

The component modelling the behaviour of a client is depicted in Fig. 7(b),
which is analogous to Fig. 7(a).

Definition 10 (Dynamic BI(P) system). A dynamic BI(P) system B =
γ(B1, . . . , Bn) is the composition of a finite set {Bi}ni=1 of dynamic BI(P) com-
ponents Bi = (Qi, Pi,→i) such that their sets of ports are pairwise disjoint, i.e.,
Pi ∩ Pj = ∅ for i 6= j, parametrized by a set γ ⊂ 2P of interactions over the set
of ports P =

⊎n
i=1 Pi.

Without loss of generality, we assume that for any a ∈ γ it is either the case
that a contains static ports only and we call it static or it contains no static port
at all and we call it dynamic. Moreover, if a ↓Pi is made of static ports, then
a ↓Pi

= a′ai for some a′ and ai ∈ Pi, i.e., all static ports in a ↓Pi
are parametrized

by the same session identifier ai. In such case, we let idsi(a) denote ai
In the following we write I(a) to denote the set {i | ¬(a#Pi)} of indices of the

components involved in a and I(a) to denote its complement [1, n] r I(a) = {i |
a#Pi}. If a is static, we denote by ids(a) the set {idsi(a) | i ∈ I(a)}, otherwise
we let ids(a) = ∅.

Given a set of substitutions σ = {bi/ai}i∈I and a static interaction a ∈ γ
such that ids(a) ⊆ {ai}i∈I we write aσ for the interaction obtained by replacing
in a each parameter ai by the corresponding parameter bi. Moreover, we write
γσ for the set of renamed static interactions {aσ | a ∈ γ ∧ ids(a) ⊆ {ai}i∈I}.

14

a ∈ γ ∀i.si
a↓Pi−−−→ s′i

γ(s1, . . . , sn)
a−→ γ(s′1, . . . , s

′
n)

[Sint]

a ∈ γ i ∈ I(a) =⇒ si
a↓Pi

bi+
−−−−−→ s′i bi fresh

i ∈ I(a) =⇒ s′i = si σ = {bi/idsi(a)}i∈I(a)
γ(s1, . . . , sn)

a−→ (γ ∪ {bi}i∈I(a) ∪ γσ)(s′1, . . . , s
′
n)

[Sopen]

a ∈ γ i ∈ I(a) =⇒ si
a↓Pi

−
−−−−→ s′i i ∈ I(a) =⇒ s′i = si

γ(s1, . . . , sn)
a−→ (γ 	 a)(s′1, . . . , s

′
n)

[Sclose]

Fig. 8. Operational semantics of dynamic BI(P) systems

Finally, given a dynamic interaction a we write γ 	 a for the set of interactions
in γ where the ports in a do not appear. Formally, γ 	 a = {a′ ∈ γ | a′ ∩ a =
∅ ∧ ids(a′) ∩ a = ∅}

Let si range over 2Pi × PQi

i representing a generic state of the component
Bi. The semantics of a dynamic BI(P) system γ(B1, . . . , Bn) is defined by the
three rules in Fig. 8.

Example 6. Consider the dynamic BI(P) components introduced in Example 5.
We illustrate one possible run of the server with two clients in Fig. 9. Roughly,
it corresponds to the series of transitions in Fig. 10, where γ, γ′, γ′′ are the ones
indicated in Fig. 9. The first transition is obtained by combining the server
transition

〈{cnt}, accept(•)〉 cnt v+−−−−→ 〈{cnt, cntv, v}, accept(•)⊕ open(v)〉

with the following transition of the first client:

〈{req1}, start1(•)〉
req1 m+−−−−−→ 〈{req1, req1m, m}, start1(•)⊕ run1(m)〉

Analogously, for the second transition. Note that suitable replicas cntv, cntw,
req1m, req2n of the static ports cnt, req1, req2 have been created locally to each
component, and that the set of interactions has been enriched with suitable repli-
cas cntv req1m and cntw req2n of the static interactions cnt req1 and cnt req2
together with freshly created dynamic interactions v m and w n.

Let s denote the last state reached. Then, the server can interact with the
clients by performing the interactions v m and w n as many times as needed, with
the system remaining in the same state s:

s
v m−→ s

w n−→ s · · ·

The above transitions are obtained by combining dynamic transitions of the
server (labels v and w) with dynamic transitions of the clients (labels m and n).

15

γ = { cnt req1 , cnt req2 }

cnty+
x
**

y

��

•cnt

•
x
nn

accept

x --

x

��

open x
x

jj

x−

req1y+

y

��

x
**

•
req1

•
x
nn

start1

x ,,

x

��

run1 x
x

jj

x−

req2y+

y

��

x
**

•
req2

•
x
nn

start2

x ,,

x

��

run2 x
x

jj

x−

Server Client1 Client2
(a) Initial State

γ′ = { cnt req1 , cnt req2 , v m , cntv req1m }

cnty+
x
**

y

��

•cnt •cntv •v

•
x
nn

accept

x --

x

��

open v x
x

jj

x−

req1y+

y

��

x
**

•
req1 •

req1m •m

•
x
nn

start1

x ,,

x

��

run1 m x
x

jj

x−

req2y+

y

��

x
**

•
req2

•
x
nn

start2

x ,,

x

��

run2 x
x

jj

x−

Server Client1 Client2
(b) First Synchronisation

γ′′ = { cnt req1 , cnt req2 , v m , cntv req1m , w n , cntw req2n }

cnty+
x
**

y

��

•cnt •cntv •v •cntw •w

•
x
nn

accept

x --

x

��

open v
w x

x

jj

x−

req1y+

y

��

x
**

•
req1 •

req1m •m

•
x
nn

start1

x ,,

x

��

run1 m x
x

jj

x−

req2y+

y

��

x
**

•
req2 •

req2n •n

•
x
nn

start2

x ,,

x

��

run2 n x
x

jj

x−

Server Client1 Client2
(c) Second Synchronisation

Fig. 9. A run of the server with two clients

16

γ

 〈{cnt}, accept(•)〉 ,
〈{req1}, start1(•)〉 ,
〈{req2}, start2(•)〉


cnt req1−−−−−→ γ′

 〈{cnt, cntv, v}, accept(•)⊕ open(v)〉 ,
〈{req1, req1m, m}, start1(•)⊕ run1(m)〉 ,
〈{req2}, start2(•)〉


cnt req2−−−−−→ γ′′

 〈{cnt, cntv, v, cntw, w}, accept(•)⊕ open(v)⊕ open(w)〉 ,
〈{req1, req1m, m}, start1(•)⊕ run1(m)〉 ,
〈{req2, req2n, n}, start2(•)⊕ run2(n)〉


Fig. 10. Transitions representing a run of the server with two clients

Finally, we illustrate the case when the session between the server and the
second client is closed:

s
w n−→ γ′

 〈{cnt, cntv, v}, accept(•)⊕ open(v)〉 ,
〈{req1, req1m, m}, start1(•)⊕ run1(m)〉 ,
〈{req2}, start2(•)〉


The above transition is obtained by combining a closing transitions of the

server (label w−) with a closing transition of the second client (label n−). Note
that the set of ports of the server and of the second client are updated con-
sequently, by removing all ports that refer to the session identifiers w and n.
Similarly, the set of interactions is γ′ = γ′′ 	 w n.

4.1 Dynamic BI(P) vs BI(P) vs P/T nets

Unlike reconfigurable BI(P) systems, dynamic BI(P) systems are strictly more
expressive than ordinary BI(P) systems. This can be immediately seen by noting
that BI(P) systems are finite state (see, e.g., [8], where it was shown that any
BI(P) system corresponds to a safe Petri net), while this is not the case for
dynamic BI(P) systems (see, e.g., Example 6).

In this section we outline a correspondence between dynamic BI(P) systems
and Place/Transition Petri nets. This is interesting because: i) it shows that
properties like reachability remains decidable and ii) it draws a nice analogy
with the correspondence between ordinary BI(P) systems and safe Petri nets
shown in [8].

Roughly, given a dynamic BI(P) system B = γ(B1, ..., Bn) we define a P/T
Petri net N(B) whose places are tuples of states from components B1, ..., Bn
and whose transitions represent the possible interactions. Note that N(B) is
determined statically and may contain more places and transitions than those
strictly necessary, i.e., N(B) may contains places that will never be marked as
well as transitions that will never be enabled. Still N(B) is finite and it is neither
an ordinary automata nor a safe Petri net because: i) it may contain transitions
that are attached to two output places; and ii) during a run it may produce more
than one token in the same place.

17

Places of N(B). The places of the net will be named like pairs (I, {pi}i∈I), where
∅ ⊂ I ⊆ [1, n] and ∀i ∈ I.pi ∈ Qi. Intuitively, the place (I, {pi}i∈I) represents
a session that involves replicas of the components Bi such that i ∈ I, where the
ith component is in state pi.

The initial marking of N(B) has one token in the place ([1, n], {p0i}i∈[1,n]),
where p0i denotes the initial state of the ith component.

Transitions of N(B). The transitions will be named like pairs (p, t) for p a place
like described above and t one of the following: an ordinary interaction a or an
interaction with spawning a+, with a ∈ γ; a dynamic interaction I or a closing
interaction I− with ∅ ⊂ I ⊆ [1, n]. However not all combinations of p and t are
considered. A pair (p, t) where p = (I, {pi}i∈I) is included in N(B) if:

1. t = a, I(a) ⊆ I and for all i ∈ I(a) then pi(x)
aix−−→ qi(x) is a transition of Bi

with a ↓Pi
= ai idsi(a). In this case we let •(p, t) = p and (p, t)• = (I, {qi}i∈I)

such that qi = pi whenever i ∈ I r I(a).

2. t = a+, I(a) ⊆ I and for all i ∈ I(a) then pi(x)
aixy+−−−−→ qi(x) ⊕ q′i(y)

is a transition of Bi with a ↓Pi
= ai idsi(a). In this case we let •(p, t) = p

and (p, t)• = (I, {qi}i∈I) ⊕ (I(a), {q′i}i∈I(a)) such that qi = pi whenever
i ∈ I r I(a).

3. t = I and for all i ∈ I then p(x)
x−→ q(x) is a dynamic transitions of Bi. In

this case we let •(p, t) = p and (p, t)• = (I, {qi}i∈I).
4. t = I− and for all i ∈ I then p(x)

x−−−→ ∅ is a dynamic transitions of Bi. In
this case we let •(p, t) = p and (p, t)• = ∅.

Example 7. Consider the dynamic BI(P) system B introduced in Example 6.
The corresponding P/T Petri net N(B) contains, e.g., the places:

({1}, {accept}) ({1}, {open}) ({2}, {start1}) ({2}, {run1}) ({3}, {start2})
({3}, {run2}) ({1, 2}, {accept, start1}) ({1, 2}, {accept, run1})
({1, 2}, {open, start1}) ({1, 2}, {open, run1}) ({1, 3}, {accept, start2})
({1, 3}, {accept, run2}) ({1, 3}, {open, start2}) ({1, 3}, {open, run2})
({2, 3}, {start1, start2}) ({2, 3}, {start1, run2}) ({2, 3}, {run1, start2})
({2, 3}, {run1, run2}) ({1, 2, 3}, {accept, start1, start2}) . . .

The initial marking of N(B) is ({1, 2, 3}, {accept, start1, start2}).
The net N(B) contains the transitions:

(({1}, {open}), {1}) (({1, 2, 3}, {accept, start1, start2}), (cnt req1)+)
(({1}, {open}), {1}−) (({1, 2, 3}, {accept, start1, run2}), (cnt req1)+)
(({2}, {run1}), {2}) (({1, 2, 3}, {accept, start1, start2}), (cnt req2)+)
(({2}, {run1}), {2}−) (({1, 2, 3}, {accept, run1, start2}), (cnt req2)+)
(({3}, {run2}), {3}) (({1, 2, 3}, {open, run1, run2}), {1, 2, 3})
(({3}, {run2}), {3}−) (({1, 2, 3}, {open, run1, run2}), {1, 2, 3}−)
(({1, 2}, {open, run1}), {1, 2}) (({1, 2}, {accept, start1}), (cnt req1)+)
(({1, 3}, {open, run2}), {1, 3}) (({1, 3}, {accept, start2}), (cnt req2)+)
(({1, 2}, {open, run1}), {1, 2}−) (({1, 3}, {open, run2}), {1, 3}−)
(({2, 3}, {run1, run2}), {2, 3}) (({2, 3}, {run1, run2}), {2, 3}−)

18

Since for all transitions (p, t) we have •(p, t) = p, we omit to define the presets
of transitions. Since for all transitions of the form (p, I) we have (p, I)• = p and
for all transitions of the form (p, I−) we have (p, I−)• = ∅, we omit to define
the postsets of such transitions. Then we have:

(p, (cnt req1)+)• = p ⊕ ({1, 2}, {open, run1})
(p, (cnt req2)+)• = p ⊕ ({1, 3}, {open, run2})

As already said, N(B) can contain dead transitions (never enabled) as well
as dead places (never marked). A simple inspection reveals that the only places
and transitions that are not dead are:

p1 = ({1, 2, 3}, {accept, start1, start2}) (p1, (cnt req1)+) (p1, (cnt req2)+)
p2 = ({1, 2}, {open, run1}) (p2, {1, 2}) (p2, {1, 2}−)
p3 = ({1, 3}, {open, run2}) (p3, {1, 3}) (p3, {1, 3}−)

Theorem 2. Reachability is decidable for any dynamic BI(P) system B.

Proof. The proof exploits the P/T Petri net encoding N(B) of B and the fact
that reachability is decidable for P/T Petri nets.

Let s = γ(s1, ..., sn) be a state of B with si = 〈Pi, fi〉 for i ∈ [1, n], and let
δ(γ) denote the set of dynamic interactions of γ (i.e., the opened sessions). Then
we denote by N(s) the marking defined as follows:

N(s) =
⊕
a∈δ(γ)

(I(a), {pi ∈ Bi | i ∈ I(a) ∧ fi(pi) ∩ a 6= ∅})

Next, we prove separately the two implications:

1. if there is a transition from s to s′ in B, then there is a transition from N(s)
to N(s′) in N(B);

2. if there is a transition from N(s) to m in N(B), then there is a state s′ such
that here is a transition from s to s′ in B.

1st implication. Assume there is a transition s
a−→ s′ in B. Then, there are four

cases to consider, but due to space limitation, we show only the second case
([Sint]), which is the more interesting one.

– s
a−→ s′ is a static transition obtained via rule [Sint].

– s
a−→ s′ is a dynamic transition obtained via rule [Sint]. Since a ∈ γ, then

there is a token p = (I(a), {pi ∈ Bi | i ∈ I(a) ∧ fi(pi) ∩ a 6= ∅}) ∈ N(s).

Moreover, there must be transitions pi(x)
x−→ qi(x) of Bi for each i ∈ I(a).

Therefore, there is a transition (p, I(a)) with •(p, I(a)) = p and (p, I(a))• =
(I(a), {qi}i∈I(a)). It is immediate to see that (p, I(a)) is enabled in N(s) and
that its firing leads to N(s′).

– s
a−→ s′ is a spawning transition obtained via rule [Sopen].

– s
a−→ s′ is a closing transition obtained via rule [Sclose].

19

2nd implication. Assume that there is a transition (p, t) in N(B) that is enabled
in N(s) and whose firing leads to a marking m. Since t is enabled, then p ∈ N(s),
i.e., it must be the case that p = (I(a′), {pi ∈ Bi | i ∈ I(a′) ∧ fi(pi) ∩ a′ 6= ∅})
for some a′ ∈ δ(γ). Then, there are four cases to consider, but due to space
limitation, we show only the third case, which is the more interesting one..

– t = a, I(a) ⊆ I(a′) and ∀i ∈ I(a) then pi(x)
aix−−→ qi(x) is a transition of Bi

with a ↓Pi
= ai idsi(a).

– t = a+, I(a) ⊆ I(a′) and ∀i ∈ I(a) then pi(x)
aixy+−−−−→ qi(x) ⊕ q′i(y) is a

transition of Bi with a ↓Pi
= ai idsi(a).

– t = I(a′) and ∀i ∈ I(a′) then p(x)
x−→ q(x) is a dynamic transitions of Bi.

In this case we have •(p, t) = p and (p, t)• = (I(a′), {qi}i∈I(a′)). Then, by

rule [Cint], we know that a′ ↓Pi
= ai ∈ δ(Pi) and si = (Pi, pi(ai) ⊕ f ′i)

ai−→
(Pi, qi(ai) ⊕ f ′i) = s′i for each i ∈ I(a′) and by rule [Sint] we have that

s
a′−→ γ(s′1, ..., s

′
n) = s′ for s′i = si when i ∈ [1, n] r I(a′). It is immediate to

see that N(s′) = m.

– t = I(a′)− and ∀i ∈ I(a′) then p(x)
x−−−→ ∅ is a dynamic transitions of Bi.

The thesis follow by the fact that reachability is decidable for N(B). �

5 Concluding remarks

In this paper we have investigated two suitable extensions of BI(P) with dynami-
cally defined behaviour and interaction. The first extension, called reconfigurable
BI(P), has evolved from a previous proposal of the VERIMAG research group
within the project ASCENS, before Dy-BIP was proposed in [6]. Here we prove
that reconfigurable BI(P) is equally expressive as ordinary BI(P). The second
extension, called dynamic BI(P), has been inspired by the use of correlation sets
in web services and can be used to define systems with infinitely many states
(contrary to ordinary BI(P) systems), but ensures that state reachability is de-
cidable. Therefore, both extensions still preserve key BI(P) features in terms of
analysis and verification. Notably the encodings exploited in our expressiveness
results are obtained without a considerable change of the basic components, in
the spirit of the glue expressiveness introduced in [3].

With respect to Dy-BIP, we think dynamic BI(P) has some advantages. While
Dy-BIP imposes ad hoc restrictions (e.g., transitions of atomic components are
labelled with only one single local port instead of a set of local ports) and ex-
tensions (e.g. transitions of atomic components are decorated with non-local
architecture constraints that may involve port names of other components, thus
compromising the modularity of the specification and moreover history vari-
ables are introduced to store the identity of interacting components), this is not
necessary for dynamic BI(P). Furthermore, the number of component instances
cannot change in Dy-BIP, contrary to dynamic BI(P).

In the future we plan to study the interplay between probabilities, priorities
and dynamics, possibly in the compositional setting offered by the algebra of

20

Petri nets with boundaries [9]. We are confident that our proposals can fit well
with the priorities based on the offer predicate semantics defined in [5].

Acknowledgments: We thank Simon Bliudze for several suggestions and com-
ments on a preliminary version of this paper.

References

1. Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for Reo. In:
WADT’08. LNCS, vol. 5486, pp. 37–55. Springer (2009)

2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in BIP. In: Fourth IEEE International Conference on Software Engineering and
Formal Methods (SEFM 2006). pp. 3–12. IEEE Computer Society (2006)

3. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: CONCUR. LNCS, vol. 5201, pp. 508–522. Springer (2008)

4. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal
Methods in System Design 36(2), 167–194 (2010)

5. Bliudze, S., Sifakis, J.: Synthesizing glue operators from glue constraints for the
construction of component-based systems. In: Software Composition. LNCS, vol.
6708, pp. 51–67. Springer (2011)

6. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using
Dy-BIP. In: Software Composition. LNCS, vol. 7306, pp. 1–16. Springer (2012)

7. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1-2), 98–120 (2006)

8. Bruni, R., Melgratti, H., Montanari, U.: Connector algebras, Petri nets, and BIP.
In: PSI’11. LNCS, vol. 7162, pp. 19–38. Springer (2012)

9. Bruni, R., Melgratti, H., Montanari, U., Sobocinski, P.: Connector algebras for
C/E and P/T nets’ interactions. Logical Methods in Comp. Sci. (2013), to appear.

10. Bruni, R., Melgratti, H.C., Montanari, U.: A connector algebra for P/T nets in-
teractions. In: CONCUR’11. LNCS, vol. 6901, pp. 312–326. Springer (2011)

11. Esparza, J., Nielsen, M.: Decidability issues for Petri nets. Petri nets newsletter
94, 5–23 (1994)

12. Gadducci, F., Montanari, U.: The tile model. In: Proof, Language, and Interaction.
pp. 133–166. The MIT Press (2000)

13. Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of ws-bpel. In: COORDI-
NATION’08. LNCS, vol. 5052, pp. 199–215. Springer (2008)

14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I–ii. Inf. Comput.
100(1), 1–77 (1992)

15. Perry, D.E., Wolf, E.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17, 40–52 (1992)

16. Sobocinski, P.: Representations of Petri net interactions. In: CONCUR’10. LNCS,
vol. 6269, pp. 554–568. Springer (2010)

17. Viroli, M.: A core calculus for correlation in orchestration languages. J. Log. Algebr.
Program. 70(1), 74–95 (2007)

	Behaviour, Interaction and Dynamics

