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Abstract

Starting from the observation that distinct notions of copying have arisen in different
categorical fields (logic and computation, contrasted with quantum mechanics ) this paper
addresses the question of when, or whether, they may coincide.

Provided all definitions are strict in the categorical sense, we show that this can never
be the case. However, allowing for the defining axioms to be taken up to canonical isomor-
phism, a close connection between the classical structures of categorical quantum mechan-
ics, and the categorical property of self-similarity familiar from logical and computational
models becomes apparent.

The required canonical isomorphisms are non-trivial, and mix both typed (multi-object)
and untyped (single-object) tensors and structural isomorphisms; we give coherence results
that justify this approach.

We then give a class of examples where distinct self-similar structures at an object
determine distinct matrix representations of arrows, in the same way as classical structures
determine matrix representations in Hilbert space. We also give analogues of familiar
notions from linear algebra in this setting such as changes of basis, and diagonalisation.

1 Introduction

This paper addresses the question of whether the classical structures used in categorical quantum
mechanics (based on monoid co-monoid pairs with additional structure) can ever be built from
unitary maps — can the monoid and co-monoid arrows be mutually inverse unitaries? From a
simplistic perspective, the answer is negative (Corollary 5.3 and Corollary 5.4); however when
we allow the defining conditions of a classical structure to be taken up to canonical isomorphism,
not only is this possible, but the required conditions (at least, using the redefinition of Abramsky
and Heunen [2]) may be satisfied by any pair of mutually inverse unitaries (Theorem 5.1) with
the correct typing in a † monoidal category.

However, the required canonical isomorphisms are non-trivial, and mix ‘typed’ and ‘untyped’
(i.e. multi-object and single-object) monoidal tensors and canonical isomorphisms. We study
these, and in Appendix A demonstrate how the question of coherence in such a setting may be
reduced to the well-established coherence results found in [20].

We illustrate this connection with a concrete example, and show how in this setting, self-
similar structures play an identical role to that played by classical structures in finite-dimensional
Hilbert space — that of specifying and manipulating matrix representations. We also give
analogues of notions such as ‘changes of basis’ and ‘diagonalisation’ in this setting.
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2 Categorical preliminaries

The general area of this paper is firmly within the field of † monoidal categories. However, due
to the extremal settings we consider, we will frequently require monoidal categories without a
unit object. We axiomatise these as follows:

Definition 2.1. Let C be a category. We say that C is semi-monoidal when there exists a
tensor ( ⊗ ) : C×C → C together with a natural indexed family of associativity isomorphisms
{ τA,B,C : A⊗ (B⊗C)→ (A⊗B)⊗C}A,B,C∈Ob(C) satisfying MacLane’s pentagon condition
(τA,B,C ⊗ 1D)τA,B⊗C,D(1A ⊗ τB,C,D) = τA⊗B,C,DτA,B,C⊗D.

When there also exists a natural object-indexed natural family of symmetry isomorphisms
{σX,Y : X⊗Y → Y⊗X}X,Y ∈Ob(C) satisfying MacLane’s hexagon condition τA,B,CσA⊗B,CτA,B,C =
(σA,C ⊗ 1B)τA,C,B(1A ⊗ σB,C) we say that (C,⊗, τ, σ) is a symmetric semi-monoidal cate-
gory. A semi-monoidal category (C,⊗, τ , , ) is called strictly associative when τA,B,C is an
identity arrow1, for all A,B,C ∈ Ob(C). A functor Γ : C → D between two semi-monoidal cate-
gories (C,⊗C) and (D,⊗D) is called (strictly) semi-monoidal when Γ(f⊗Cg) = Γ(f)⊗DΓ(g). A
semi-monoidal category (C,⊗) is called monoidal when there exists a unit object I ∈ Ob(C),
together with, for all objects A ∈ Ob(C), distinguished isomorphisms λA : I ⊗ A → A and
ρA : A ⊗ I → A satisfying MacLane’s triangle condition 1U ⊗ λV = (ρU ⊗ 1V )τU,I,V for all
U, V ∈ Ob(C).

A dagger on a category C is simply a duality that is the identity on objects; that is, a

contravariant endofunctor ( )† : C → C satisfying (1A)† = 1A and
(
(f)†

)†
= f , for all A ∈ Ob(C)

and f ∈ C(A,B). An arrow U ∈ C(X,Y ) is called unitary when it is an isomorphism with
inverse given by U−1 = U† ∈ C(Y,X).

When C has a (semi-) monoidal tensor ⊗ : C × C → C, we say that (C,⊗) is † (semi-)
monoidal when ( )† is a (semi-) monoidal functor, and all canonical isomorphisms are unitary.

Remark 2.2. Coherence for semi-monoidal categories A close reading of [20] will demon-
strate that MacLane’s coherence theorems for associativity and commutativity are equally ap-
plicable in the presence of absence of a unit object. The theory of Saavedra units [17] also
demonstrates that the properties of the unit object are independent of other categorical proper-
ties (including associativity). Motivated by this, we give a simple method of adjoining a strict
unit object to a semi-monoidal category that is left-inverse to the obvious forgetful functor.

Definition 2.3. Let (C,⊗) be a semi-monoidal category. We define its unit augmentation to
be the monoidal category given by the following procedure: We first take the coproduct of C with
the trivial group {1I}, considered as a single-object dagger category. We then extend the tensor
of C to the whole of C

∐
I by taking ⊗ I = IdC

∐
I = I ⊗ .

It is straightforward that the unit augmentation of a semi-monoidal category is a monoidal
category; a full proof, should one be needed, is given as an appendix to [15]. Similarly, it is a
triviality that if (C,⊗) is † semi-monoidal, then its unit augmentation is dagger monoidal.

The connection of the above procedure with MacLane’s coherence theorems for associativity
and commutativity should then be clear; any diagram that commutes in C also commutes in
the unit augmentation; conversely any diagram (not containing the unit object) that commutes
in the unit augmentation also commutes in C. Thus MacLane’s coherence theorems (with the
obvious exclusion of the unit object) also hold in the semi-monoidal and unitless cases.

1This is not implied by equality of objects A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C, for all A,B,C ∈ Ob(C). Although
MacLane’s pentagon condition is trivially satisfied by identity arrows, naturality with respect to the tensor may
fail. Examples we present later in this paper illustrate this phenomenon.
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3 Classical structures and their interpretation

Classical structures were introduced in [5] as an abstract categorical interpretation of orthonor-
mal bases in Hilbert spaces and the special role that these play in quantum mechanics (i.e. as
sets of compatible disjoint measurement outcomes). This intuition was validated in [3], where it
is proved that in the category of finite-dimensional Hilbert spaces, there is a bijective correspon-
dence between orthonormal bases and classical structures. Mathematically, classical structures
are symmetric † Frobenius algebras in † monoidal categories satisfying a simple additional con-
dition.

Definition 3.1. Let (C,⊗, I, ( )†) be a strictly associative monoidal category. A Frobenius
algebra consists of a co-monoid structure (∆ : S → S ⊗ S,> : S → I) and a monoid structure
(∇ : S ⊗ S → S,⊥ : I → S) at the same object, where the monoid / comonoid pair satisfy the
Frobenius condition

(1S ⊗∇)(∆⊗ 1S) = ∆∇ = (∇⊗ 1S)(1S ⊗∆)

Expanding out the definitions of a monoid and a comonoid structure gives:

• (associativity) ∇(1S ⊗∇) = ∇(∇⊗ 1S) ∈ C(S ⊗ S ⊗ S, S).

• (co-associativity) (∆⊗ 1S)∆ = (1S ⊗∆)∆ ∈ C(S, S ⊗ S ⊗ S).

• (unit) ∇(⊥⊗ 1S) = ∇(1S ⊗⊥).

• (co-unit) (>⊗S)∆ = 1X ⊗>)∆.

A Frobenius algebra (S,∆,∇,>,⊥) in a † monoidal category is called a dagger Frobenius
algebra when it satisfies ∆† = ∇ and >† = ⊥.

Let (C,⊗) be a symmetric † monoidal category, with symmetry isomorphisms σX,Y ∈ C(X ⊗
Y, Y ⊗ X). A † Frobenius algebra is called commutative when σS,S∆ = ∆, and hence ∇ =
∇σS,S. A classical structure is then a commutative † Frobenius algebra satisfying the following
additional condition:

• (The classical structure condition) ∆† is left-inverse to ∆, so ∇∆ = 1S.

Remark 3.2. The intuition behind a classical structure is that it describes related notions
of copying and deleting (the comonoid and monoid structures). The underlying intuition is
that, although arbitrary quantum states are subject to the no-cloning and no-deleting theorems
[25, 22], quantum states that are ‘classical’ (i.e. members of some fixed orthonormal basis – the
‘computational basis’ of quantum computation) can indeed be both copied and deleted (against a
copy) using the fan-out maps and their inverses [27].

An aim of this paper is to compare such a notion of copying with a distinct notion of copying
that arose independently in models of resource-sensitive logical and computational systems [8, 9],
and to demonstrate connections, via the theory of untyped categorical coherence, between these
notions.

3.1 Classical structures without units

As noted in [2], when considering the theory of classical structures in arbitrary separable Hilbert
spaces, is often necessary to generalise Definition 3.1 to the setting where unit objects are not
considered – i.e. to lose the unit and co-unit axioms. We refer to [2] for a study of how much of
the theory of [5] carries over to this more general setting, and give the following formal definition,
which is a key definition of [2] in the strict, semi-monoidal setting:
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Definition 3.3. Let (C,⊗) be a strictly associative semi-monoidal category. An Abramsky-
Heunen (A.-H.) dagger Frobenius algebra consists of a triple (S ∈ Ob(C),∆ : S →
S ⊗ S,∇ = ∆† : S ⊗ S → S) satisfying

1. (associativity) ∇(1S ⊗∇) = (1⊗∇)∇ ∈ C(S ⊗ S ⊗ S, S).

2. (Frobenius condition) ∆∇ = (1S ⊗∇)(∆⊗ 1S) ∈ C(S ⊗ S, S ⊗ S)

An A-H † Frobenius algebra is an A-H classical structure when (C,⊗) is symmetric, and the
following two conditions are satisfied:

3. (Classical structure condition) ∇∆ = 1S,

4. (Commutativity) σS,S∆ = ∆.

3.2 Classical structures, and identities up to isomorphism

It is notable that the definitions of the previous sections are based on strictly associative tensors.
Consider the definition presented of a monoid within a category, (1A ⊗ ∇)∇ = (∇ ⊗ 1A)∇.
Drawing this as a commutative diagram

A⊗A

∇⊗1A

��

A
∇ //∇oo A⊗A

1A⊗∇
��

(A⊗A)⊗A A⊗ (A⊗A)
Id.

demonstrates that this definition relies on the identity of objects A ⊗ (A ⊗ A) = (A ⊗ A) ⊗ A
required for strict associativity2 in an essential way. The definition of a co-monoid requires the
same identification of objects.
Similarly, the Frobenius condition (1A ⊗∇)(∆⊗ 1A) = ∆∇ may be drawn as

A⊗A ∇ //

∆⊗1A

��

A
∆ // A⊗A

A⊗A⊗A
Id

// A⊗A⊗A

1A⊗∇

OO

Remark 3.4. A significant feature of this paper is the relaxation of these strict identities, to
allow the above definitions to be satisfied up to canonical isomorphisms. When making this gen-
eralisation, the choice of canonical isomorphisms seems to be straightforward enough; however,
there are other possibilities. We take a more general view and allow the axioms above to be
satisfied up to any canonical isomorphisms for which there exists a suitable theory of coherence.

4 Self-similarity, and † self-similar structures

By contrast with the strongly physical intuition behind classical structures, self-similar struc-
tures were introduced to study infinitary and type-free behaviour in logical and computational
systems. Their definition is deceptively simple – they are simply a two-sided form of the ‘classical
structure’ condition of Definition 3.1. The following definition is based on [12, 13]:

2We emphasise that such identities of objects are a necessary, but not sufficient, condition for strict associa-
tivity of a tensor; see the footnote to Definition 2.1.
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Definition 4.1. Let (C,⊗) be a semi-monoidal category. A self-similar structure (S,�,�)
is an object S ∈ Ob(C), together with two mutually inverse arrows

• (code) � ∈ C(S ⊗ S, S).

• (decode) � ∈ C(S, S ⊗ S).

satisfying �� = 1S⊗S and �� = 1S. A dagger self-similar structure is a self-similar
structure in a † monoidal category with unitary code / decode arrows.

Remark 4.2. Recall from Remark 3.2 the intuition of the classical structures of categorical
quantum mechanics as a (restricted form of) copying and deleting that is applicable to compu-
tational basis states only. The very simple definition of a self-similar structure above is also
clearly describing a notion of copying, albeit at the level of objects rather than arrows; simply,
there are canonical arrows that provide isomorphisms between one copy of an object, and two
copies of an object. A key theme of this paper is the relationship between these two notions of
copying: whether the monoid / comonoid structure of an A.H. classical structure can also be a
† self-similar structure, and whether a classical structure can also define a monoid / comonoid
satisfying the Frobenius condition, &c.

Instead of a simple yes/no answer, we will observe a close connection with the theory of
categorical coherence and strictification. In the strict case, requiring unitarity of the monoid /
comonoid arrows implies a collapse to the unit object (Corollaries 5.3 and 5.4), whereas, up to
a certain set of (non-trivial) canonical isomorphisms, † self-similar structures do indeed satisfy
the conditions for an A.-H. classical structure (Theorems 5.1 and 5.5).

We will first require many preliminary results on self-similar structures and their relationship
with the theory of monoidal categories; we start by demonstrating that † self-similar structures
are unique up to unique unitary:

Proposition 4.3. Let (S,�,�) be a † self-similar structure of a † semi-monoidal category
(C,⊗, ( )†). Then

1. Given an arbitrary unitary U ∈ C(S, S), then (S,U�,�U†) is also a † self-similar struc-
ture.

2. Given † self-similar structures (S,�,�) and (S,�′,�′), there exists a unique unitary U ∈
C(S, S) such that �′ = U� ∈ C(S ⊗ S, S) and �′ = �U† ∈ C(S, S ⊗ S).

Proof.

1. Since U is unitary, U � �U† = 1S and �U†U� = 1S⊗S . Thus, as the composite of
unitaries is itself unitary, (S,U�,�U†) is a † self-similar structure.

2. We define U = �′� ∈ C(S, S), giving its inverse as U−1 = ��′ = U†. The following
diagrams then commute:

S ⊗ S

�

��

�′

""

S ⊗ S

S
U
// S S

�′
<<

U†
// S

�

OO

and U = �′� is the unique unitary satisfying this condition.
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4.1 The ‘internal’ monoidal tensor of a self-similar structure

We now demonstrate a close connection between self-similar structures and and untyped (i.e.
single-object) categorical properties:

Theorem 4.4. Let (S,�,�) be a self-similar structure of a semi-monoidal category (C,⊗, τ , , ).
Then the code / decode arrows determine a semi-monoidal tensor

⊗�� : C(S, S)× C(S, S)→ C(S, S)

on the endomorphism monoid of S given by, for all a, b ∈ C(S, S),

a⊗�� b = �(a⊗ b)� ∈ C(S, S)

The associativity isomorphism for this semi-monoidal structure is given by

τ�� = �(�⊗ 1S)τS,S,S(1S ⊗�)�

When (S,⊗) is symmetric, with symmetry isomorphisms σX,Y ∈ C(X⊗Y, Y ⊗X) then ⊗�� :
C(S, S)× C(S, S)→ C(S, S) is a symmetric semi-monoidal tensor, with symmetry isomorphism
σ�� ∈ C(S, S) given by σ�� = �σS,S�.

Proof. This is a standard result of the categorical theory of self-similarity; see [12, 13, 16] for
the general construction, and [12, 18] for numerous examples based on inverse monoids.

Definition 4.5. Let (S,�,�) be a self-similar structure of a semi-monoidal category (C,⊗, τ , , ).
We refer to the semi-monoidal tensor

⊗�� : C(S, S)× C(S, S)→ C(S, S)

given in Theorem 4.4 above as the internalisation of ( ⊗ ) by (S,�,�). We similarly refer
to the canonical associativity isomorphism τ�� ∈ C(S, S) (resp. symmetry isomorphism σ�� ∈
C(S, S) as the associativity isomorphism (resp. symmetry isomorphism) induced by
(S,�,�).

Remark 4.6. It is proved in [15] (See also Appendix B of [16]) that strict associativity for
single-object semi-monoidal categories is equivalent to degeneracy (i.e. the single object being
a unit object for the tensor). Thus, even when (C,⊗) is strictly associative, the associativity
isomorphism induced by (S,�,�) given by τ�� = �(� ⊗ 1S)(1S ⊗ �)� is not the identity (at
least, provided S is not the unit object for ⊗�� ).

The following simple corollary of Theorem 4.4 above is taken from [16].

Corollary 4.7. Let (S,�,�) be a † self-similar structure of a † semi-monoidal category (C,⊗, τ , , ).
Then ⊗�� : C(S, S)×C(S, S)→ C(S, S), the internalisation of ⊗ by (S,�,�), is a † semi-
monoidal tensor.

Proof. This is immediate from the property that �† = �, and the definition of ⊗�� and the
canonical isomorphism τ�� ∈ C(S, S) in terms of unitaries.
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5 † Self-similar structures as lax A-H classical structures

We now demonstrate that, up to certain canonical coherence isomorphisms a † self-similar
structure (S,�,�) of a symmetric † semi-monoidal category (C,⊗, τ , , , σ , ) satisfies the axioms
for an A-H classical structure. The precise coherence isomorphisms required are those generated
by

• The semi-monoidal coherence isomorphisms {τ , , , σ , } of (C,⊗)

• The induced coherence isomorphisms {τ��, σ��} of (C(S, S),⊗��)

• The semi-monoidal tensors ⊗ and ⊗��

Theorem 5.1. Let (S,�,�) be a † self-similar structure of a symmetric † semi-monoidal cat-
egory (C,⊗, τ , , , σ , ). Then the following conditions hold:

• (Lax associativity) �(�⊗ 1S)τS,S,S = τ�� � (1S ⊗�)

• (Lax Frobenius condition) �τ−1
��� = (1S ⊗�)τ−1

S,S,S(�⊗ 1S)

• (Classical structure condition) �� = 1S

• (Lax symmetry) σS,S� = �σ��

Proof. The following proof is based on results of [16].
Conditions 1. and 2. above follow from the commutativity of the following diagram

S
� //

τ��

��

S ⊗ S 1S⊗� // S ⊗ (S ⊗ S)

τS,S,S

��
S S ⊗ S

�
oo (S ⊗ S)⊗ S

�⊗1S

oo

which is simply the definition of the induced associativity isomorphism. Condition 3. follows
immediately from the definition of a † self-similar structure, and condition 4. is simply the
definition of the induced symmetry isomorphism.

Remark 5.2. For the above properties to be taken seriously as lax versions of the axioms
for an A-H classical structure, there needs to be some notion of coherence relating the semi-
monoidal tensor ⊗ : C × C → C and its canonical isomorphisms, to the semi-monoidal tensor
⊗�� : C(S, S) × C(S, S) → C(S, S) and its canonical isomorphisms. A general theory of

coherence for self-similarity and associativity is given in [15]; in Appendix A, we outline how a
simple case of this is also applicable in the † symmetric case.

It may be wondered whether the induced isomorphisms are necessary in theorem 5.1 above
– can we not have a † self-similar structure satisfying analogous conditions solely based on the
canonical isomorphisms of (C,⊗)? The following corollary demonstrates that this can only be
the case when S is degenerate — i.e. the unit object for some monoidal category.

Corollary 5.3. Let (S,�,�) be a self-similar structure of a semi-monoidal category (C,⊗, τ , , ).
Then the following condition

• (Overly restrictive Frobenius condition) �� = (1S ⊗�)τ−1
S,S,S(�⊗ 1S)

7



implies that S is degenerate – i.e. the unit object for some monoidal category.

Proof. By definition, the associativity isomorphism for the internalisation of ( ⊗ ) is given by

τ�� = �(1S ⊗�)τ−1
S,S,S(�⊗ 1S)�

Thus as � and � are mutually inverse unitaries, the overly restrictive Frobenius condition
implies that τ�� = 1S . However, as proved in [15] (see also Appendix B of [16]), single-object
semi-monoidal categories are strictly associative exactly when their unique object is a unit object
of some monoidal category.

An alternative perspective of Corollary 5.3 is the following:

Corollary 5.4. Let (S,∆,∇) be an A-H classical structure satisfying the precise axioms3 of
Definition 3.3. Unitarity of ∆ implies that S is the unit object of a monoidal category.

Despite Corollaries 5.3 and 5.4 above, it is certainly possible for a self-similar structure to
satisfy all the axioms for a Frobenius algebra up to a single associativity isomorphism; however,
this must be the induced associativity isomorphism of Definition 4.5, as we now demonstrate:

Theorem 5.5. Let (S,�,�) be a † self-similar structure of a strictly associative † semi-monoidal
category (C,⊗, ( )†). Then the defining conditions of an A.-H. † Frobenius algebra are satisfied
up to a single associativity isomorphism as follows:

• �(�⊗ 1S) = τ�� � (1s ⊗�)

• (�⊗ 1S)(1S ⊗�) = �τ−1
���

Proof. This is simply the result of Theorem 5.1 in the special case where the monoidal tensor
⊗ : C × C → C is strictly associative. Note that even though ⊗ : C × C → C is strictly

associative, its internalisation ⊗�� : C(S, S)× C(S, S)→ C(S, S) cannot be strictly associative;
rather, from Theorem 4.4 the required associativity isomorphism is given by τ�� = �(� ⊗
1S)(1S ⊗�)� 6= 1S .

6 An illustrative example

In the following sections, we will present the theory behind an example of a † self-similar struc-
ture that determines matrix representations of arrows in a similar manner to how classical struc-
tures in finite-dimensional Hilbert space determine matrix representations of linear maps. Our
example is deliberately chosen to be as ‘non-quantum’ as possible, in order to explore the limits
of the interpretations of pure category theory: it comes from a setting where all isomorphisms
are unitary, all idempotents commute, and the lattice of idempotents satisfies distributivity
rather than some orthomodularity condition. Many of these properties are determined by the
particular form of dagger operation used; we will work with inverse categories.

7 Inverse categories as † categories
Inverse categories arose from the algebraic theory of semigroups, but the extension to a categor-
ical definition is straightforward and well-established. We also refer to [4] for the more general
restriction categories that generalise inverse categories in the same way that restriction monoids
generalise inverse monoids.

3We strongly emphasise that this corollary does not hold if we allow the axioms of Definition 3.3 to hold up
to canonical isomorphism, as demonstrated in Theorems 5.1 and 5.5.
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Definition 7.1. Inverse categories
An inverse category is a category C where every arrow f ∈ C(X,Y ) has a unique generalised
inverse f‡ ∈ C(Y,X) satisfying ff‡f = f and f‡ff‡ = f‡. A single-object inverse category is
called an inverse monoid.

Remark 7.2. Uniqueness of generalised inverse operations Inverse monoids and semi-
groups were defined and studied long before inverse categories; the definition of an inverse cate-
gory is thus rather ‘algebraic’ in nature, given by requiring the existence of unique arrows satisfy-
ing certain properties – this is in contrast to a more functorial definition. However, uniqueness
implies that there can be at most one (object-indexed) operation ( )XY : C(X,Y ) → C(Y,X)
that takes each arrow to some generalised inverse satisfying the above axioms. We will therefore
treat ( )‡ as an (indexed) bijection of hom-sets, and ultimately (as we demonstrate in Theorem
7 below) a contravariant functor.

The following result is standard, and relates generalised inverses and idempotent structures
of inverse monoids (see, for example [18]).

Lemma 7.3. Let M, ( )‡ be an inverse monoid. Then for all a ∈ M , the element a‡a is
idempotent, and the set of idempotents EM of M is a commutative submonoid of M where
every element is its own generalised inverse.

Proof. These are standard results of inverse semigroup theory, relying heavily on the unique-
ness of generalised inverses. The key equivalence between commutativity of idempotents and
uniqueness of generalised inverses is due to [24].

Based on the above, the following is folklore:

Theorem 7.4. Let C, ( )‡ be an inverse category. Then the operation ( )‡ is a dagger operation,
and all isomorphisms of C are unitary.

Proof. The technical results we require are straightforward generalisations of well-established
inverse semigroup theory, so are simply given in outline.
First observe that it is implicit from the definition that, on objects X‡ = X ∈ Ob(C). We now
prove that ( )‡, with this straightforward extension to objects, is a contravariant involution.

To demonstrate contravariant functoriality, observe that (gf)(gf)‡gf = gf for all f ∈
C(X,Y ) and g ∈ C(Y,Z). However, ff‡ and g‡g are both idempotents of Y , and thus commute.
Hence (gf)f‡g‡(gf) = gg‡gff‡f = gf and so (gf)‡ = f‡g‡ as required.

To see that ( )‡ is involutive, note that by definition f‡
(
f‡
)‡
f‡ = f‡, for all f ∈ C(X,Y ).

However, also from the definition, f‡ff‡ = f‡ and again by uniqueness,
(
f‡
)‡

= f .
Thus ( )‡ is a contravariant involution that acts trivially on objects. To see that all

isomorphisms are unitary, consider an arbitrary isomorphism u ∈ C(X,Y ). Then trivially,
uu−1u = u ∈ C(X,Y ) and u−1uu−1 = u−1 ∈ C(Y,X). Uniqueness of generalised inverses then
implies that u−1 = u‡, and hence u is unitary.

Corollary 7.5. Let C be an inverse category with a semi-monoidal tensor ( ⊗ ). Then (C,⊗, ( )‡)
is a dagger semi-monoidal category.

Proof. Given arbitrary f ∈ C(A,B) and g ∈ C(X,Y ), then by functoriality

(f ⊗ g)(f‡ ⊗ g‡)(f ⊗ g) = (ff‡f ⊗ gg‡g) = (f ⊗ g)

9



However, by definition

(f ⊗ g)(f ⊗ g)‡(f ⊗ g) = (ff‡f ⊗ gg‡g) = (f ⊗ g)

and by uniqueness, (f ⊗ g)‡ = f‡ ⊗ g‡. Also, since all isomorphisms are unitary, all canonical
isomorphisms are unitary.

7.1 The natural partial order on hom-sets

All inverse categories have a naturally defined partial order on their hom-sets:

Definition 7.6. Let C, ( )‡ be an inverse category. For all A,B ∈ Ob(C), the relation �A,B is
defined on C(A,B), as follows:

f �A,B g iff ∃ e2 = e ∈ C(A,A) s.t. f = ge

It is immediate that, for all A,B ∈ Ob(C), the relation �A,B is a partial order on C(A,B), called
the natural partial order.

Convention: When it is clear from the context, we omit the subscript on �.

We may rewrite the above non-constructive definition more concretely:

Lemma 7.7. Given f � g ∈ C(X,Y ), in some inverse category, then f = gf‡f .

Proof. By definition, f = ge, for some e2 = e ∈ C(X,X). Thus fe = f , since e is idempotent.
From the defining equation for generalised inverses, f = ff‡f = gef‡f . As f‡f is idempotent,
and idempotents commute, f = gf‡fe. However, we have already seen that fe = f , and hence
f = gf‡f .

A very useful tool in dealing with the natural partial order is the following lemma, which is
again a classic result of inverse semigroup theory rewritten in a categorical setting (see also [9]
where it is rediscovered under the name ‘passing a message through a channel’).

Lemma 7.8. Pushing an idempotent through an arrow Let C, ( )‡) be an inverse category.
Then for all f ∈ C(X,Y ), and e2 = e ∈ C(X,X), there exists an idempotent e′2 = e′ ∈ C(Y, Y )
satisfying e′f = fe.

Proof. We define e′ = fef‡ ∈ C(Y, Y ). By Lemma 7.3, e′2 = fef‡fef‡ = ff‡feef‡ = fef‡ = e′.
Further, e′f = fef‡f = ff‡fe = fe, as required.

Proposition 7.9. The natural partial order is a congruence — that is, given f � h ∈ C(X,Y )
and g � k ∈ C(Y, Z), then gf � kh ∈ C(X,Z).

Proof. By definition, there exists idempotents p2 = p ∈ C(X,X) and q2 = q ∈ C(Y, Y ) such that
f = hp ∈ C(X,Y ) and g = kq ∈ C(Y,Z), and hence gf = hpkq ∈ C(X,Z). We now use the
‘passing an idempotent through an arrow’ technique of Lemma 7.8 to deduce the existence of
an idempotent p′ ∈ C(X,X) such that pk = kp′ ∈ C(X,Y ). Hence gf = khp′q. However, by
Part 3. of Lemma 7.8, p′q is idempotent, and hence gf � kh, as required.

Corollary 7.10. Every locally small inverse category (C, ( )‡) is enriched over the category
Poset of partially ordered sets.

Proof. Expanding out the definition of categorical enrichment will demonstrate that the crucial
condition is that proved in Proposition 7.9 above.
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7.2 A representation theorem for inverse categories

A classic result of inverse semigroup theory is the Wagner-Preston representation theorem
[23, 26] which states that every inverse semigroup S is isomorphic to some semigroup of partial
isomorphisms on some set. This implies the usual representation theorem for groups as sub-
groups of isomorphisms on sets. There exists a natural generalisation of this theorem to inverse
categories:

Definition 7.11. The inverse category pIso is defined as follows:

• (Objects) All sets.

• (Arrows) pIso(X,Y ) is the set of all partial isomorphisms from X to Y . In terms of
diagonal representations, it is the set of all subssets f ⊆ Y ×X satisfying

b = y ⇔ y = a ∀ (b, a), (y, x) ∈ f

• (Composition) This is inherited from the category Rel of relations on sets in the obvious
way.

• (Generalised inverse) This is given by f‡ = {(x, y) : (y, x) ∈ f ; the obvious restriction
of the relational converse.

The category pIso has zero arrows, given by 0XY = ∅ ⊆ Y × X. This is commonly used to
define a notion of orthogonality by

f ⊥ g ∈ C(X,Y ) ⇔ g‡f = 0X and gf‡ = 0Y

Remark 7.12. The category (pIso,]) is well-equipped with self-similar structures; one of the
most heavily-studied [12, 18, 13] is the natural numbers N, although any countably infinite set
will suffice. As demonstrated in an Appendix to [14], there is a 1:1 correspondence between
self-similar structures at N and points of the Cantor set (excluding a subset of measure zero).
Other examples include the Cantor set itself [12, 13] and other fractals [19].

Theorem 7.13. Every locally small inverse category
(
C, ( )‡

)
is isomorphic to some subcategory

of (pIso, ( )‡).

Proof. This is proved in [11], and significantly prefigured (for small categories) in [4].

The idempotent structure and natural partial ordering on pIso is particularly well-behaved,
as the following standard results demonstrate:

Proposition 7.14. 1. The natural partial order of pIso may be characterised in terms of
diagonal representations by f � g ∈ pIso(X,Y) iff f ⊆ g ∈ Y ×X.

2. All idempotents e2 = e ∈ pIso(X,X) are simply partial identities 1X′ for some X ′ ⊆ X,
and thus pIso is isomorphic to its own Karoubi envelope.

3. The meet and join w.r.t. the natural partial order are given by, for all f, g ∈ pIso(X,Y)

f ∨ g = f ∪ g and f ∧ g = f ∩ g

when these exist. Therefore, set of idempotents at an object is a distributive lattice.
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4. Given an arbitrarily indexed set {fj ∈ pIso(X,Y)}j∈J of pairwise-orthogonal elements,
together with arbitrary a ∈ pIso(W,X) and b ∈ pIso(Y,Z), then

∨
j∈J fj ∈ pIso(X,Y)

exists, as does
∨
j∈J bfja ∈ pIso(W,Z), and

b

∨
j∈J

fj

 a =
∨
j∈J

(bfja)

Proof. These are all standard results for the theory of inverse categories; 1. is a straightforward
consequence of the definition of the natural partial order, and 2.-4. follow as simple corollaries.

8 Monoidal tensors and self-similarity in pIso

We have seen that pIso is a † category; it is also a † monoidal category with respect to two
distinct monoidal tensors - the Cartesian product × and the disjoint union ] . For the
purposes of this paper, we will study the disjoint union. We make the following formal definition:

Definition 8.1. We define the disjoint union ] : pIso × pIso → pIso to be the following
monoidal tensor:

• (Objects) A ]B = A× {0} ∪B × {1}, for all A,B ∈ Ob(pIso).

• Arrows) Given f ∈ pIso(A,B) and g ∈ pIso(X,Y), we define f ] g = inc00(f) ∪
inc11(g) ⊆ (B ] Y ) × (A ] X) where inc00 is the canonical (for the Cartesian product)
isomorphism B×A ∼= B×{0}×A×{0}, and similarly, inc11 : Y ×X ∼= Y ×{1}×X×{1}.

It is immediate that (pIso,]) is a †-monoidal tensor since, as a simple consequence of the
definition of generalised inverses, all isomorphisms are unitary.

By contrast with the behaviour of disjoint union in (for example) the category of relations,
it is neither a product nor a coproduct on pIso. Despite this, it has analogues of projection &
inclusion maps:

Definition 8.2. Given X,Y ∈ Ob(pIso), the arrows ιl ∈ pIso(X,X]Y) and ιr ∈ pIso(Y,X]
Y) are defined by ιl(x) = (x, 0) ∈ X ] Y and ιr(y) = (y, 1) ∈ X ] Y . By convention, we denote
their generalised inverses by πl :∈ pIso(X ]Y,X) and πr ∈ pIso(X ]Y,Y), giving

X ] Y

πlss πl ++X

ιl
66

Y

ιr
hh

Following [12] we refer to these arrows as the projection and inclusion arrows; they are
sometimes [10, 1] called quasi-projections / injections, in order to emphasise that they are
not derived from categorical products / coproducts. By construction, the projections / inclusions
satisfy the following four identities:

πrιl = 0XY , πlιr = 0Y X , πlιl = 1X , πrιr = 1Y

As noted in [12, 13], the above arrows can be ‘internalised’ by a self-similar structure
(S,�,�), in a similar way to canonical isomorphisms (see Section 4.1). Doing so will give
an embedding of a well-studied inverse monoid into pIso(S,S).
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Definition 8.3. Polycyclic monoids
The 2 generator polycyclic monoid P2 is defined in [21] to be the inverse monoid given by the
generating set {p, q}, together with the relations

pp−1 = 1 = qq−1 , pq−1 = 0 = qp−1

Remark 8.4. This inverse monoid is also familiar to logicians as the (multiplicative part of)
the dynamical algebra of [6, 8]. It is also familiar from the theory of state machines as the
syntactic monoid of a pushdown automaton with a binary stack [7], and to pure mathematicians
as the monoid of partial homeomorphisms of the Cantor set [12].

The following result on polycyclic monoids will prove useful:

Lemma 8.5. P2 is congruence-free; i.e. the only composition-preserving equivalence relations
on P2 are either the universal congruence r ∼ s for all r, s ∈ P2, or the identity congruence
r ∼ s ⇔ r = s for all r, s ∈ P2.

Proof. This is a special case of a general result of [21]. Congruence-freeness is an example of
Hilbert-Post completeness; categorically, it is closely related to the ‘no simultaneous strictifica-
tion’ theorem of [15].

The following result, generalising a preliminary result of [12, 13], makes the connection
between embeddings of polycyclic monoids and internalisations of projection/ injection arrows
of pIso precise:

Theorem 8.6. Let S be a self-similar object (and hence a † self-similar object) of pIso. We
say that an inverse monoid homomorphism φ : P2 → pIso(S,S) is a strong embedding when
it satisfies the condition

φ(p†p) ∨ φ(q†q) = 1S

Then every strong embedding φ : P2 → pIso(S,S) uniquely determines, and is uniquely deter-
mined by, a † self-similar structure at S.

Proof. Let πl, πr ∈ pIso(S ] S,S and ιl, ιr ∈ pIso(S,S ] S) be the projections / inclusions of
Definition 8.2, and let (S,�,�) be a self-similar structure. We define φ�� : P2 → pIso(S,S) by
its action on the generators of P2, giving

φ��(p) = πl � and φ��(q) = πr�

Their generalised inverses are then φ��(p‡) = �ιl and φ��(q‡) = �ιr. Thus

φ��(p)φ��(p‡) = πl ��ιl = 1S = πr ��ιr = φ��(q)φ��(q‡)

Similarly, φ��(p)φ��(q‡) = πl � �ιr = 0S = πr � �ιl = φ��(q)φ��(p‡) and so φ�� is a
homomorphism. Since P2 is congruence-free it is also an embedding. To demonstrate that it is
also a strong embedding,

1S = �1S]S� = �(ιlπl ∨ ιrπr)�
= �ιlπl � ∨� ιrπr� = φ��(p‡p) ∨ φ��(q‡q)

as required. Further, given another self-similar structure (S, c, d) satisfying φdc = φ��, then
� = c ∈ pIso(S ] S,S) and � = d ∈ pIso(S,S ] S).

Conversely, let φ : P2 → pIso(S,S) be a strong embedding, and consider the two arrows
ιlφ(p) ∈ pIso(S,S ] S) and ιrφ(q) ∈ pIso(S,S ] S). it is straightforward that these are
orthogonal; we thus define

�φ = ιlφ(p) ∨ ιrφ(q) ∈ pIso(S,S ] S)
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and take �φ = �
‡
��. The strong embedding condition implies that �φ�φ = 1S and �φ�φ =

1S]S ; thus we have a self-similar structure, as required. Further, given another strong embedding
ψ : P2 → pIso(S,S), then �φ = �ψ iff φ = ψ.

8.1 Matrix representations from self-similar structures

We are now in a position to demonstrate how self-similar structures in pIso determine matrix
representations of arrows.

Theorem 8.7. Let S ∈ Ob(pIso) be a self-similar object. Then every self-similar structure
(S,�,�) determines matrix representations of arrows of pIso(S,S).

Proof. We use the correspondence between self-similar structures and strong embeddings of
polycyclic monoids given in Theorem 8.6. Given arbitrary f ∈ pIso(S,S), we define [f ]��, the
matrix representation of f determined by (S,�,�) to be the following matrix:

[f ]�� =

 φ��(p)fφ��(p‡) φ��(p)fφ��(q‡)

φ��(q)fφ��(p‡) φ��(q)fφ��(q‡)


Given two such matrices of this form, we interpret their matrix composition as follows:

(
g00 g01

g10 g11

)(
f00 f01

f10 f11

)
=

 g00f00 ∨ g01f10 g00f01 ∨ g01f11

g10f00 ∨ g11f10 g10f01 ∨ g11f11


that is, the usual formula for matrix composition, with summation interpreted by join in the
natural partial order – provided that the required joins exist. We prove that this composition
is defined for matrix representations determined by a fixed self-similar structure.

In what follows, we abuse notation, for clarity, and refer to p, q, p‡, q‡ ∈ pIso(S,S) instead
of φ��(p), φ��(q), φ��(p‡), φ��(q‡) ∈ pIso(S,S). As this proof is based on a single fixed self-
similar structure at S, we may do this without ambiguity.

Consider the entry in the top left hand corner of [g]��[f ]��. Expanding out the defini-
tion will give this as pgp‡pfp‡ ∨ pgq‡qfp‡. To demonstrate that these two terms are orthogo-

nal,
(
pgp‡pfp‡

)‡ (
pgq‡qfp‡

)
= pf‡p‡pg‡p‡pgq‡qfp‡. Appealing to the ‘pushing an idempotent

through an arrow’ technique of Proposition 7.8 gives the existence of some idempotent e2 = e
such that (

pgp‡pfp‡
)‡ (

pgq‡qfp‡
)

= pf‡p‡peg‡gq‡qfp‡

Again appealing to this technique gives the existence of some idempotent E2 = E such that(
pgp‡pfp‡

)‡ (
pgq‡qfp‡

)
= pf‡p‡Epq‡qfp‡. However, pq‡ = 0 and hence

(
pgp‡pfp‡

)‡ (
pgq‡qfp‡

)
=

0. as required. An almost identical calculation will give that
(
pgq‡qfp‡

)‡ (
pgp‡pfp‡

)
= 0 and

thus these two terms are orthogonal, so the required join exists.
The proof of orthogonality for the other three matrix entries is almost identical; alternatively,

it may be derived using the obvious isomorphism of P2 that interchanges the roles of p and q.
It remains to show that composition of matrix repesentations of elements coincides with

composition of these elements; we now prove that [g]��[f ]�� = [gf ]��. By definition,

[gf ]�� =

 pgfp‡ pgfq‡

qgfp‡ qgfq‡
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As the (implicit) embedding of P2 is strong, 1S = p‡p∨q‡q. We may then substitute g(p‡p∨q‡q)f
for gf in the above to get

[gf ]�� =

 pg(p‡p ∨ q‡q)fp‡ pg(p‡p ∨ q‡q)fq‡

qg(p‡p ∨ q‡q)fp‡ qg(p‡p ∨ q‡q)fq‡


Expanding this out using the distributivity of composition over joins gives the definition of
[g]��[f ]��, and hence [gf ]�� = [g]��[f ]��, as required.

Finally, we need to prove that the representation of arrows as matrices determined by the
self-similar structure (S,�,�) is faithful — that is, a = b ∈ pIso(S,S) iff [b]�� = [a]�� (where
equality of matrices is taken as component-wise equality).

The (⇒) implication is immediate from the definition. For the other direction, [b]�� = [a]��
when the following four identities are satisfied:

pap‡ = pbp‡ paq‡ = pbq‡

qap‡ = qbp‡ qaq‡ = qbq‡

Prefixing/ suffixing each of these identities with the appropriate choice selection taken from
{p, q, p‡, q‡} will give the following identities:

p‡pap‡p = p‡pbp‡p p‡paq‡q = p‡pbq‡q

q‡qap‡p = q‡qbp‡p q‡qaq‡q = q‡qbq‡q

Now observe that these four elements are pairwise-orthogonal. We may take their join, and
appeal to distributivity of composition over join to get

(p‡p ∨ q‡q)a(p‡p ∨ q‡q) = (p‡p ∨ q‡q)a(p‡p ∨ q‡q)

However, as the implicit embedding of P2 is strong, (p‡p∨q‡q) = 1S and thus a = b, as required.

Remark 8.8. It may seem somewhat disappointing that a self-similar structure (S,�,�) simply
determines (2× 2) matrix representations of arrows of pIso(S,S), rather than matrix represen-
tations of arbitrary orders. This is not quite the case, but there is a subtlety to do with the
behaviour of the internalisation of the tensor ] : pIso× pIso→ pIso. It is immediate from
the definition that the internalisation of this tensor by a self-similar structure has the obvious

matrix representation: [f ]�� g]�� =

(
f 0S
0S g

)
. However, recall from Remark 4.6 that

the internalisation ⊗�� of an arbitrary tensor ⊗ can never be strictly associative, even
when ⊗ itself is associative. Thus, in our example in (pIso,]), arbitrary (n × n) matrices,
in the absence of additional bracketing information, cannot ambiguously represent arrows. It
is of course possible to have unambiguous n × n matrix representations that are determined by
binary treeS whose leaves are labelled with a single formal symbol, and whose nodes are labelled
by self-similar structures at S – however, this is beyond the scope of this paper!

8.2 Isomorphisms of self-similar structures as ‘changes of matrix rep-
resentation’

We have seen in Proposition 4.3 that † self-similar structures are unique up to unique unitary.
We now relate this to the correspondence in (pIso,]) between † self-similar structures, strong
embeddings of P2, and matrix representations.
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Lemma 8.9. Let (S,�,�) and (S, c, d) be two † self-similar structures at the same object of
(pIso,]), and let U be the unique isomorphism (following Proposition 4.3) making the following
diagram commute:

S ⊗ S

�

��

�′

""

S ⊗ S

S
U
// S S

�′
<<

U†
// S

�

OO

The two strong embeddings φ��, φ(c,d) : P2 → pIso(S,S) determined by these self-similar struc-
tures (as in Theorem 8.6) are mutually determined by the following identities:

φ(c,d)(p) = φ��(p)U−1 φ(c,d)(q) = φ��(q)U−1

φ(c,d)(p
‡) = Uφ��(p‡) φ(c,d)(q

‡) = Uφ��(q‡)

Proof. By construction, c = U� and d = �U−1. Thus φ(c,d)(p) = πld = πl�U
−1 = φ��(p)U−1.

Taking duals (generalised inverses) gives φ(c,d)(p
‡) = U�ιl = Uφ��(p‡). The other two identities

follow similarly.

The above connection between the embeddings of P2 given by two self-similar structures
allows us to give the transformation between matrix representations of arrows given by two
self-similar structures:

Theorem 8.10. Let (S,�,�) and (S, c, d) be two self-similar structures at the same object of
(pIso,]), and let the matrix representations of some arrow f ∈ pIso(S,S) given by (S,�,�)
and (S, c, d) respectively be

[f ]�� =

(
α β
γ δ

)
and [f ](c,d) =

(
α′ β′

γ′ δ′

)
Then [f ](c,d) is given in terms of [f ]�� by the following matrix composition: α′ β′

γ′ δ′

 =

 u‡00 u‡10

u‡01 u‡11

 α β

γ δ

 u00 u01

u10 u11


where  u00 u01

u10 u11

 =

 φ��(p)φ(c,d)(p
‡) φ��(p)φ(c,d)(q

‡)

φ��(q)φ(c,d)(p
‡) φ��(q)φ(c,d)(q

‡)


Proof. Long direct calculation, expanding out the definition of the above matrix representations,
will demonstrate that α′ β′

γ′ δ′

 =

 φ(c,d)(p)fφ(c,d)(p
‡) φ(c,d)(p)fφ(c,d)(q

‡)

φ(c,d)(q)fφ(c,d)(p
‡) φ(c,d)(q)fφ(c,d)(q

‡)


as a consequence of the identities

φ��(p‡p) ∨ φ��(q‡q) = 1S = φ(c,d)(p
‡p) ∨ φ(c,d)(q

‡q)
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8.3 Diagonalisations of matrices via isomorphisms of self-similar struc-
tures

A useful application of basis changes in linear algebra is to construct diagonalisations of matrices.

For a matrix M =

(
A B
C D

)
over a vector space V = V1 ⊕ V2, a diagonalisation is a linear

isomorphism D satisfying D−1MD =

(
A′ 0
0 B′

)
, for some elements A′, B′. We demonstrate

how this notion of diagonalisation has a direct analogue at self-similar objects of (pIso,]),
and provide a necessary and sufficient condition (and related construction) for an arrow to be
diagonalised by an isomorphism of self-similar structures.

Definition 8.11. Diagonalisation at self-similar objects of (pIso,])
Let (S,�,�) be a self-similar structure of (pIso,]) and let ∈ pIso(S,S) be an arrow with matrix

representation [f ]�� =

(
α β
γ δ

)
. We define a diagonalisation of this matrix representation

to be a self-similar structure (S, c, d) such that [f ](c,d) =

(
λ 0
0 µ

)
, so the matrix conjugation

given in Theorem 8.10 satisfies λ 0

0 µ

 =

 u‡00 u‡10

u‡01 u‡11

 α β

γ δ

 u00 u01

u10 u11


We now characterise when the matrix representation of an arrow (w.r.t. a certain self-similar

structure) may be diagonalised by another self-similar structure:

Theorem 8.12. Let (S,�,�) and (S, c, d) be self-similar structures of (pIso,]) at the same
object, giving rise to strong embeddings φ��, φ(c,d) : P2 → pIso(S,S) and (equivalently) inter-
nalisations of the disjoint union

]�� , ](c,d) : pIso(S,S)× pIso(S,S)→ pIso(S,S)

The matrices representations that may be diagonalised by the unique isomorphism between
(S,�,�) and (S, c, d) are exactly those of the form φ��(p)(X ](c,d) Y )φ��(p‡) φ��(p)(X ](c,d) Y )φ��(q‡)

φ��(q)(X ](c,d) Y )φ��(p‡) φ��(q)(X ](c,d) Y )φ��(q‡)


Proof. In the following proof, we abuse notation slightly for purposes of clarity. We will denote

φ��(p), φ��(q), φ��(p‡), φ��(q‡) ∈ pIso(S,S)

by p, q, p‡, q‡ ∈ pIso(S,S), and similarly, denote

φ(c,d)(p), φ(c,d)(q), φ(c,d)(p
‡), φ(c,d)(q

‡) ∈ pIso(S,S)

by r, s, r‡, s‡ ∈ pIso(S,S).

Given arbitrary arrows X,Y ∈ pIso(S,S), then [X ](c,d) Y ](c,d) =

(
X 0
0 Y

)
, and all

diagonal matrix representations (w.r.t. (S, c, d)) are of this form. Let us now conjugate such a
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diagonal matrix by inverse of the matrix U derived from Theorem 8.10; this gives U−1[X ](c,d)

Y ](c,d)U =  pr−1Xrp−1 ∨ qr−1Y rq−1 pr−1Xrq−1 ∨ ps−1Y sq−1

qr−1Xrp−1 ∨ qs−1Y sp−1 qr−1Xrq−1 ∨ qs−1Y sq−1


Comparing this with the explicit form of the internalisation of the disjoint union by the self-
similar structure (S, c, d) gives p(X ](c,d) Y )p−1 p(X ](c,d) Y )q−1

q(X ](c,d) Y )p−1 q(X ](c,d) Y )q−1


Therefore all matrices of this form are diagonalised by the unique isomorphism from (S,�,�)
to (S, c, d). Conversely, as X,Y ∈ pIso(S,S) were chosen arbitrarily, all matrices diagonalised
by this unique isomorphism are of this form.

Remark 8.13. It is worth emphasising that the above theorem characterises those matrix rep-
resentations that may be diagonalised by a particular self-similar structure; it does not address
the question of whether there exists a self-similar structure that diagonalises a particular matrix
representation. For the particular example of N as a self-similar object, an arrow f ∈ pIso(N,N)
is diagonalisable iff there exists a partition of N into disjoint infinite subsets A ∪ B = N such
that f(A) ⊆ A and f(B) ⊆ B. Simple cardinality arguments will demonstrate that this question
is undecidable in general.

9 Conclusions

If nothing else, this paper has hopefully demonstrated that, although superficially dissimilar, the
notions of copying derived from quantum mechanics and from logic (and categorical linguistics)
are nevertheless closely connected. However, these connections are not apparent unless we allow
for the definitions in both cases to be taken up to canonical isomorphisms.
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A Relating coherence for symmetric † semi-monoidal cat-
egories with coherence for internalised tensors

Let (S,�,�) be a † self-similar structure of a symmetric † semi-monoidal category (C,⊗, τ , , , σ , , ( )†),
and let the internal tensor and induced canonical isomorphisms be denoted ⊗�� : C(S, S)×
C(S, S) → C(S, S) and τ��, σ�� ∈ C(S, S). We consider the question of when a categorical
diagram built inductively from the following toolkit

{S ∈ Ob(C), ⊗ , τ , , , σ , , ⊗�� , τ��, σ��, ( )†}

may be guaranteed to commute?
We will exhibit a sufficient condition for coherence of diagrams built inductively from this

toolkit that is closely related to MacLane’s coherence theorems for associativity and symme-
try [20], and the coherence theorem for self-similarity given in [15], but first give some some
preliminary definitions and results:

Definition A.1. We define TreeS to be the set of free non-empty binary trees over a single
symbol S inductively, as follows:

• S ∈ TreeS,

• Given A,B ∈ TreeS, then (A2B) ∈ TreeS.

We will write members of TreeS as bracketed strings in the obvious way, such as (S2((S2S)2S) ∈
TreeS.

There exists an obvious map that assigns objects of C to members of TreeS given by instan-
tiating each occurrence of the formal symbol 2, as follows:

Definition A.2. Given free non-empty binary tree X ∈ TreeS, we define an object Inst(X) ∈
Ob(C). We give this assignment inductively:

• Inst(S) = S ∈ Ob(C).

• Inst(A2B) = Inst(A)⊗ Inst(B) ∈ Ob(C)

Note that the same object of C may be assigned to distinct members of C by this definition –
consider the special case where (C,⊗) is strictly associative. See [] for other examples not based
on strict associativity.
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We now give a symmetric † semi-monoidal category whose objects are free binary trees over
S, and whose hom-sets are copies of hom-sets of C.

Definition A.3. We define the symmetric † semi-monoidal category (FS ,2) as follows:

• (Objects) Ob(FS) = TreeS.

• (Arrows) FS(X,Y ) = C(Inst(X), Inst(Y )

• (Composition) This is inherited from C in the obvious way.

• (Tensor)

– (On Objects) Given A,B ∈ Ob(FS), then their tensor is the formal tree A2B.

– (On Arrows) Given f ∈ FS(A,B) and g ∈ FS(X,Y ), then

f2g = f ⊗ g ∈ C(Inst(A)⊗ Inst(X), Inst(B)⊗ Inst(Y ))

Note that C(Inst(A)⊗ Inst(X), Inst(B)⊗ Inst(Y )) =

C(Inst(A2X), Inst(B2Y )) = FS(A2X,B2Y )

as required.

• (Canonical Isomorphisms)

– Given A,B,C ∈ Ob(FS), the associativity isomorphism

τA,B,C ∈ FS(A2(B2C), (A2B)2C)

is given by

τA,B,C = τInst(A),Inst(B),Inst(C) ∈ C(Inst(A2(B2C)), Inst((A2B)2C)

– Given A,B,∈ Ob(FS), the symmetry isomorphism σA,B ∈ FS(A2B), (B2A) is given
by

σA,B = σInst(A),Inst(B) ∈ C(Inst(A2B), Inst(B2A))

• (Dagger Operation) Given X ∈ Ob(FS), we define, on objects, X† = X. On arrows,
the dagger is inherited from C, so given f ∈ FS(X,Y ),

f† = f† ∈ C(Inst(Y ), Inst(X)) = FS(Y,X)

The symmetric † semi-monoidal category (FS ,2, ( )†) may be thought of as a ‘well-behaved’
version of the subcategory of (C,⊗) generated by S ∈ Ob(C) — in particular, all canonical (for
associativity) diagrams over (FS ,2) commute (we refer to [] for a proof of this, and a discussion
of why this is not true in arbitrary monoidal or semi-monoidal categories).

The Inst mapping of Definition A.2 lifts to a † semi-monoidal functor from (FS ,2) to (C,⊗)
in the obvious way:

Definition A.4. We define Inst : (FS ,2, ( )†)→ (C,⊗, ( )†) as follows:

• (Objects)For all T ∈ Ob(FS) = TreeS, we take Inst(T ) to be as in Definition A.2.
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• (Arrows) Given f ∈ FS(X,Y ), we define

Inst(f) = f ∈ C(Inst(X), Inst(Y )) = FS(X,Y )

By contrast with the familiar“ioof’s” (Identity on Objects Functors), this functor is the identity
on arrows (i.e. homsets). Given this fact, it is straightforward to prove that Inst is not only
functorial, but preserves both the (semi-) monoidal structure and the dagger operation.

As well as the above † monoidal functor, there exists another dagger monoidal functor to
the endomorphism monoid C(S, S), equipped with the internalised tensor ⊗�� . This is based
on the following inductively defined arrows:

Definition A.5. For all objects X ∈ Ob(FS), we define the generalised code / decode
arrows �X ∈ F(X,S) and �X ∈ F(S,X) inductively, as follows

• �S = 1S ∈ FS(S, S)

• �A2B = �(�A2�B) ∈ FS(A2B,S)

• �X = �
†
X

The following definition is an extension of a construction of [12, 15] to the † commutative
setting.

Definition A.6. The generalised convolution functor Φ�� : (FS ,2, ( )†)→ (C(S, S),⊗��, ( )†)
is defined by:

• (Objects) Φ��(X) = S, for all X ∈ Ob(FS).

• (Arrows) Φ(f) = �Y f�X for all f ∈ FS(X,Y ).

Since both �Y and �X are unitary, for all X,Y ∈ Ob(FS), this functor is fully faithful. A simple
inductive argument (given in [15]) demonstrates that it is also a (semi-)monoidal functor, and
thus, for all X,Y, Z ∈ Ob(FS),

Φ��(τX,Y,Z) = τ�� , Φ��(σX,Y ) = σ��

To see that it also preserves the dagger, note that

Φ��(f)† = (�Y f�X)
†

= �Xf
†�Y = Φ��

(
f†
)

We now use the toolkit developed to give a sufficient (albeit non-constructive) condition for
commutativity of ‘mixed’ diagrams built inductively from

{S ∈ Ob(C) , ⊗ , τ , , , σ , , ⊗�� , τ�� , σ�� , ( )†}

Lemma A.7. Let D be an arbitrary diagram over FS. Then

1. D commutes ⇒ Inst(D) commutes.

2. D commutes ⇔ Φ��(D) commutes.

Proof.

1. This is a simple consequence of the fact that functors preserve commutativity of diagrams.
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2. The ⇒ implication is trivial. The opposite direction is due to the fact that Φ�� is fully
faithful; consider a diagram D over FS such as

Y
g

&&
X

h
//

f

88

Z

Applying Φ�� to this diagram gives Φ��(D) as follows:

S
Φ��(g)

&&
S

Φ��(h)
//

Φ��(f)

88

S

and by definition of Φ��, the following diagram commutes if and only if D commutes, if
and only if Φ��(D) commutes:

Y
g

&&�v

��

X
h

//

f

88

�u

��

Z

�w

��

S
Φ(g)

&&

�v

OO

S
Φ(h)

//

Φ(f)

88
�u

OO

S

�w

OO

The generalisation of the above reasoning to arbitrary diagrams is then immediate.

The above lemma allows us to reduce the question posed at the beginning of this Appendix
to a simpler question that may be resolved by an appeal to well-established theory.

Proposition A.8. Let M be a diagram over FS built from the following toolkit:

{S ∈ Ob(FS), 2 , τ , , , σ , , ⊗�� , τ��, σ��, ( )†}

The question of whether Φ��(M) may be guaranteed to commute may be dealt with by an appeal
to MacLane’s coherence theorem for symmetry and associativity [20].

Proof. Recall from Part 2. of Lemma A.7 that Φ��(M) commutes if and only if M commutes.
Now recall that (almost by definition), for all X,Y, Z ∈ Ob(FS),

Φ��(τX,Y,Z) = τ�� , Φ��(σX,Y ) = σ��

Similarly, Φ�� acts as the identity on the endomorphism monoid FS(S, S), so

Φ��(τ��) = τ�� , Φ��(σ��) = σ��
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Finally, since Φ��(f ⊗ g) = Φ��(f)⊗�� Φ��(g), we may conclude that Φ��(M) is a canonical
diagram for a symmetric monoidal tensor, built from the toolkit

{ ⊗�� , τ�� , σ��}

We have thus reduced the question of commutativity of M to a case that may be satisfied by
appealing to MacLane’s theorems for symmetry and associativity.

This does not (yet) quite answer the question posed at the beginning of this Appendix.
Recall that (FS ,2) is the monoidal category freely generated by S ∈ Ob(C), rather than the
subcategory of (C,⊗) generated by S. Instead, we require the following result:

Theorem A.9. Let M be a diagram over C built from the following toolkit:

{S ∈ Ob(C), ⊗ , τ , , , σ , , ⊗�� , τ��, σ��, ( )†}

Then M is guaranteed to commute when there exists some canonical (for associativity and com-
mutativity) diagram C over (C(S, S),⊗��) that is guaranteed to commute by MacLane’s coher-
ence theorems, together with some diagram T over FS, satisfying

Inst(T) = M and Φ��(T) = C

Proof. This follows from Proposition A.8 and Lemma A.7 above. Note that a suitable diagram
T, when it exists, need not be unique.

Remark A.10. The above theorem is non-constructive, in that it is based on the pure existence
of some appropriate diagram T over FS. However, starting from the diagram M, it is not
difficult to conceive of a simple algorithm that will allow us to decide whether or not such a
diagram T exists, and provide a concrete example when this is the case.
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