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Abstract

In recent years, quantum-based methods have promisingly integrated the traditional procedures in infor-
mation retrieval (IR) and natural language processing (NLP). Inspired by our research on the identifica-
tion and application of quantum structures in cognition, more specifically our work on the representation
of concepts and their combinations, we put forward a ‘quantum meaning based’ framework for structured
query retrieval in text corpora and standardized testing corpora. This scheme for IR rests on considering
as basic notions, (i) ‘entities of meaning’, e.g., concepts and their combinations, and (ii) traces of such
entities of meaning, which is how documents are considered in this approach. The meaning content of
these ‘entities of meaning’ is reconstructed by solving an ‘inverse problem’ in the quantum formalism,
consisting of reconstructing the full states of the entities of meaning from their collapsed states identified
as traces in relevant documents. The advantages with respect to traditional approaches, such as Latent
Semantic Analysis (LSA), are discussed by means of concrete examples.
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1 Introduction

Since the appearance of The Geometry of Information Retrieval [1], introducing a quantum structure
approach to Information Retrieval (IR), Widdows and Peters [2], using a quantum logical negation for
a concrete search system, and Aerts and Czachor [3], identifying quantum structure in semantic space
theories, such as Latent Semantic Analysis (LSA) [4], the employment of techniques and procedures induced
from the mathematical formalisms of quantum physics – Hilbert space, quantum logic and probability, non-
commutative algebras, etc. – in fields such as IR and natural language processing (NLP), has produced a
number of new and interesting results [5, 6, 7, 8, 9]. The latter can be placed within a growing quantum
structure research in cognitive domains [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. These quantum-based
approaches mainly integrate and generalize the standard procedures in IR and NLP. Roughly speaking,
one considers ‘documents’ and ‘terms’ as basic ingredients, concentrating on the so-called ‘document-
term matrix’ which contains as entries the number of times that a specific term appears in a specific
document. Both terms and documents are represented by vectors in a suitable (Euclidean) semantic space,
and the scalar product between these vectors is a measure of the similarity of the corresponding documents

1

ar
X

iv
:1

30
4.

01
04

v1
  [

cs
.I

R
] 

 3
0 

M
ar

 2
01

3

diraerts@vub.ac.be,jbroekae@vub.ac.be, ssozzo@vub.ac.be
tomas.veloz@ubc.ca


and terms. This approach has extended to Latent Semantic Analysis (LSA) [4], Hyperspace Analogue
to Language (HAL) [22], Probabilistic Latent Semantic Analysis (pLSA) [23], Latent Dirichlet Allocation
(LDA) [24]. Search engines on the World Wide Web, though introducing on top additional procedures, e.g.,
‘page ranking’, mostly rely on this linear space technique to determine a basic set of relevant documents.
Nothwithstanding its success, the procedure meets some difficulties, including high computational costs
and lack of incremental updates, which limits its applicability. Furthermore, one can claim the ‘ad hoc’
character of the procedure and, as a consequence, none of the examples mentioned above is immune to
criticisms.

Inspired by a two-decade research on the identification and application of quantum structures in dis-
ciplines different from the micro-world [10, 11, 14, 25, 26, 27, 28, 29, 30], we put forward in this paper
the first steps leading to a possible conceptually new perspective for IR and NLP. In this approach, we
want to replace terms by ‘entities of meaning’ as primary notions, which can be concepts or combinations
of concepts. Such ‘entities of meaning’ can be in different states and change under the influence of the
‘meaning landscape’, or ‘conceptual landscape’, or ‘conceptual context’. If we say ‘pour out the water’, and
the meaning landscape is that of a flooded village after a heavy storm, the state of the entity of meaning
which is ‘pour out the water’ is very different, from when the meaning landscape is that of a cafe where
we are having some refreshments together. The explicit act of considering entities of meaning in states
makes our approach fundamentally ‘contextual’. Moreover, documents are not regarded as collection of
words, but as traces, i.e. more concrete states, of these entities of meaning, or concepts, or combinations
of concepts. This means that a document is considered to be a collapse of full states of different entities of
meaning, each entity leaving a trace in the document. The words are only spots of these traces and they
are not the main meaning carriers. The technical focus of our approach consists in trying to reconstruct
there full states of the different entities of meaning from experiments that can only spot their traces, i.e.
that can only look at words in documents. We believe that aspects of our quantum approach to cognition,
still in full development, can help in formulating and making technically operational this ‘inverse problem’,
consisting in ‘reconstructing the the full states of the different entities of meaning’, starting from their
collapsed states as traces of word spots in documents.

We introduce in Sec. 2 the basic notions that are needed in our scheme for IR, that is, entities of
meaning, which can be concept combinations, documents as traces of such entities of meaning and their
technical reconstruction. We point out how our perspective is different from traditional approaches, e.g.,
LSA. We specify the sense in which the new paradigm is meaning focused and argue that it is closer
to the processes concretely working in the human mind. Moreover, the quantum-theoretic formalism
we have recently developed to model concept combinations is a possible natural candidate to represent
our meaning-based scheme. Indeed, the pair (entities of meaning, documents) is replaced by the pair
(concepts/combinations, exemplars) in Sec. 3. Thus, the quantum modeling we have employed in the
simple case where entities of meaning are concepts and documents are exemplars can be naturally used
also in these more general IR cases. We stress that we have as yet no theory – but specific cases – to
solve the functional inverse problem in an IR system, hence we only sketch the first steps for an approach
on the theoretical level. Nevertheless, our quantum-inspired scheme is potentially more performant than
LSA-based techniques. This is explicitly shown in Sec. 4, where a LSA analysis of Hampton’s data on
disjunctions of concepts is supplied and compared with our quantum cognition model in Sec. 3. We
draw the conclusion that (i) LSA is only partially capable of capturing the effects of overextension and
underextension in concept combinations, (ii) LSA supplies only approximate solutions, unlike our quantum
modeling approach. This suggests that an application of our quantum and meaning-based approach would
be more efficient than classical approaches both in text analysis and in information recovering.
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2 Fundamentals of the meaning-based approach

We present here the basics of our meaning-based approach for IR, explaining, in particular, its novelties
with respect to the traditional IR and NLP procedures and justifying the use of the quantum-mathematical
formalism in Sec. 3 in it.

LSA and its extensions typically use word-counting techniques in which the semantic structure of large
bodies of text is incorporated into semantic linear spaces and the ‘document-text matrix’. The latter
contains as entries the number of times that a given term appears in a given document. If one labels the
rows of this matrix by the documents and the columns by the terms, then each row can be viewed as a
vector representing the corresponding document and each column as a vector representing the corresponding
term. If vectors are normalized, their scalar product is a measure of the ‘similarity’ of the corresponding
documents and terms, hence this data analysis can be used in IR and NLP. In the approach we put forward
in this paper, instead, the semantic structure of texts is incorporated directly into concepts and their traces
describing documents. This method is closer to the processes concretely working in the human mind, which
explains why the quantum modeling in Sec. 3, which faithfully describes human collected data on concept
combinations, can be applied to IR in a straightforward way. We stress, however, that the approach we
propose is not yet worked out sufficiently to be applied to concrete IR problems, since many of the technical
aspects of the inverse problem need to be specified and elaborated in different ways. Notwithstanding this,
we will see that some interesting conclusions can already be drawn.

The first fundamental element of our approach is the conceptually new fact that ‘terms’ are replaced by
‘entities of meaning’ as basic elements, and specifically such entities of meaning can be ‘concepts’ or their
combinations. This is why we work with ‘entities of meaning’, usually expressed as concept combinations,
rather than with terms. Our procedure takes into account the meaning of the words from the very beginning,
and there are valuable reasons to believe that this is how the human mind works. Indeed, whenever we read
a text, we understand the ‘meaning’ of the text, and even have no efficient memory for the ‘structure of
the terms’. The substitution of terms with entities of meaning also allows us to use the quantum modeling
formalism in Sec. 3 for representing concepts and their combinations. In the latter work, concepts are
indeed treated as entities that can be in different states and change their state under the influence of a
context, exactly as microscopic quantum particles change their state under a measurement context.

The second basic element is the interpretation of ‘pieces of texts’ or, better, ‘documents’, as ‘traces
of these entities of meaning’. In this perspective, a document is not regarded as a combination of words
but, rather, as collapsed states of the considered entities of meaning, or combinations of concepts. And,
again, there are valuable reasons to believe that this view is an adequae representation of how the human
mind operates. Indeed, if we consider the entity of meaning The Cat Runs Through The Garden, which is
a combination of concepts, and consider a document telling about the adventures of a cat, a trace of The
Cat Runs Through The Garden can be identified in this document, depending on the meaning content of
the story about the cat. A weight can be identified representing the ‘aboutness’ of the meaning content
of the document with respect to the entity of meaning The Cat Runs Through The Garden. And the
document itself can be considered as a collapsed state of the full state of the entity of meaning The Cat
Runs Through The Garden. This is exactly the structure that we can study by means of the quantum
modeling formalism, for example what we explained in Sec. 3, namely, a document being a collapsed state
of an entity of meaning after a measurement process (a cognitive test on subjects, a query on the web, etc.).
The preceding insight has been inspired by what typically occurs in quantum experiments on microscopic
particles, where one looks for traces of quantum particles. Whenever an experimental test is performed, a
trace, or snapshot, of a quantum particle is left in a suitable apparatus, e.g., a Bell chamber. A trace of
this kind reveals a collapsed process of the quantum particle in the real physical space.

The third element of our approach is developing a technique to reconstruct the full states of the
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considered entities of meaning starting from weights that these full states contain with respect to their
collapsed states, i.e. the documents. This is what in physics is called the ‘inverse problem’. We observe that
the human mind performs this inverse problem brilliantly, it indeed reconstructs the ‘entities of meaning’
of a document starting from what is written on the piece of paper, hence starting from – not the words –
but the trace of these entities of meaning, or the collapsed states. And this is exactly also what quantum
experimentalists and phenomenologists do, they recover the initial state of quantum particles starting from
their collapsed states and outcome statistics of repeated experiments.

We stress that the inverse problem above can be technically very complicated, so that we have only
given a conceptual description of it here. One could, for example, investigate the methods employed in
quantum physics for state reconstruction and tomography, extending them to IR systems. In any case, our
quantum cognition approach has already performed a complete reconstruction of the inverse problem in a
Hampton’s test of typicality [29, 30]. Test subjects were asked to choose from a list of 24 exemplars the
one that they estimated best represented the concepts Fruits, Vegetables and their disjunction Fruits or
Vegetables. We elaborated a 25-dimensional complex Hilbert space which perfectly agreed with empirical
data and allowed us to reconstruct and represent the initial states of the concepts. In this quantum model,
the given concepts are the ‘entities of meaning’, while the exemplars, being more concrete states, or traces,
of concepts in our approach, play the role of collapsed states of these conceptual entities of meaning. This
suggests that a similar Hilbert space scheme can be envisaged where we replace ‘exemplars’ by ‘paragraphs
of texts’ playing the role of documents, while ‘concepts’ are replaced by ‘entities of meaning’. Of course,
a quantum-mechanical model of this kind needs to be specified once a real experiment is performed on
human subjects, but it already contains the genuine quantum structures that play a role in an IR process,
such as collapse, contextuality, emergence, entanglement, interference and superposition.

3 Effectiveness of a quantum cognition modeling in IR

It is well known that classical logical and probabilistic approaches fail when dealing with conceptual
vagueness, the gradation of membership weights and concept combination (see, e.g., [31, 32, 33, 34]). For
this reason, we have recently worked out a quantum-theoretic approach for concept combination [14, 27,
28, 29, 30]. On the other hand, we have anticipated in Sec. 2 that this quantum cognition formalism is a
natural candidate to represent our meaning based approach for IR. The first reason is that both approaches
deal with concepts and their states and meaning, the second is that the meaning based approach for IR
in Sec. 2 rests on some processes that are hypothesized to work in the human mind, while our quantum-
theoretic modeling faithfully accords with a large collection of experimental data on human subjects on the
combination of two concepts [32, 33]. But there is a third and even stronger motivation for concretely using
our quantum cognition approach in dealing with IR problems: it mathematically follows the same scheme of
Sec. 2. Here, the role of ‘entities of meaning’ is played by the concepts and their disjunctions/conjunctions,
while the role of ‘documents’ is played by the set of ‘exemplars’. Indeed, the latter are more concrete
states of concepts, hence they can be regarded as traces, or collapsed states, of these conceptual entities
of meaning. This means that our quantum modeling scheme would work ‘equally well’ if we did the
experiment with ‘concepts, combinations of concepts’ and ‘real documents’, with human subjects estimating
the ‘aboutness’ of certain concepts with respect to a document. It is thus worth focusing on this quantum
cognition approach and compare it with traditional approaches.

To model combinations of two concepts we need a Fock space F which consists of two sectors: ‘sector
1’ is a Hilbert space H, while ‘sector 2’ is a tensor product Hilbert space H⊗H, so that F = H⊕ (H⊗H).
As a general consideration, sector 1 mainly enables modeling of interference connected phenomena, while
sector 2 mainly enables modeling of entanglement connected phenomena. Let us consider the membership
weights of exemplars of concepts and their conjunctions/disjunctions measured by Hampton [32, 33]. He
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identified systematic deviations from classical (fuzzy set) conjunctions/disjunctions, an effect known as
‘overextension’ or ‘underextension’. We concentrate on disjunctions here, which we will actually compare
with LSA in Sec. 4. A completely similar analysis can be done for conjunctions [14]. It can be shown that
a large part of Hampton’s data cannot be modeled in a classical probability space satisfying Kolmogorov’s
axioms, due to the following theorem.

Theorem 1. The membership weights µx(A), µx(B) and µx(A or B) of an exemplar x for the concepts A,
B and A or B can be represented in a classical probability model if and only if the following two conditions
are satisfied.

∆d = max(µx(A), µx(B))− µx(A or B) ≤ 0 (1)

0 ≤ kd = µx(A) + µx(B)− µx(A or B) (2)

where ∆d is the disjunction maximum rule deviation, and kd is the Kolmogorovian disjunction factor.

Proof. See (Aerts, 2009a), theorem 6.

Equation (1) expresses compatibility with the maximum rule for the conjunction of fuzzy set theory
and, more generally, with monotonicity of classical Kolmogorovian probability. A situation with ∆d > 0
is called ‘underextension’ [33]. Equation (2) expresses instead compatibility with additivity of classical
Kolmogorovian probability. Equations (1) and (2) together provide necessary and sufficient conditions to
describe the experimental membership weights µx(A), µx(B) and µx(A or B) in a Kolmogorovian proba-
bility space (Ω, σ(Ω), P ) (σ(Ω). In this case, indeed, events PA, PB ∈ σ(Ω) exist such that P (EA) = µx(A),
P (EB) = µx(B), and P (EA ∪ EB) = µx(A or B).

Let us consider a specific example. Hampton estimated the membership weight of Donkey with respect
to the concepts Pet, Farmyard Animal and their disjunction Pet or Farmyard Animal finding the values
µDonkey(Pet) = 0.5, µDonkey(Farmyard Animal) = 0.9, µDonkey(Pet or Farmyard Animal) = 0.7. Thus,
the exemplar Donkey presents underextension with respect to the disjunction Pet or Farmyard Animal of
the concepts Pet and Farmyard Animal. We have in this case ∆d = 0.2 6≤ 0, hence no classical probability
representation exists for these data, because of Th. 1. It can instead be proved that a quantum probability
model in Fock space exists for these Hampton’s data [33].

Theorem 2. The membership weights µx(A), µx(B) and µx(A or B) of an exemplar x for the concepts A,
B and A or B can be represented in a quantum probability model where

µx(A or B) = m2
x(µx(A) + µx(B)− µx(A)µx(B)) + n2x(

µx(A) + µx(B)

2
+ Intx(A,B)) (3)

where the numbers m2
x and n2x are convex coefficients, i.e. 0 ≤ m2

x, n
2
x ≤ 1, m2

x + n2x = 1, and θx is the
interference angle with

Intx(A,B) =
√

1− µx(A)
√

1− µx(B) cos θx (4)

Proof. See Aerts, 2009a [14].

The term µx(A) + µx(B) − µx(A)µx(B) is what one would expect for the disjunction in the case of
classical probability. The term Intx(A,B)) is instead the quantum interference term and it is responsible,

together with the average µx(A)+µx(B)
2 , of the deviations from classical expectations. The coefficients m2

x

and n2x measure the weights of sectors 2 and 1, respectively, of F . For example, in the case of Donkey
with respect to Pet, Farmyard Animal and Pet or Farmyard Animal, we have that Th. 2 is satisfied with
m2
Donkey = 0.26, n2Donkey = 0.74 and θDonkey = 77.34◦.

5



Theorem 2 and its corresponding theorem for conjunctions – which we do not report, for the sake
of brevity – contain the quantum probabilistic expressions allowing the modeling of a large amount of
Hampton’s data [32, 33]. In particular, the quantum modeling above perfectly agrees with the data
reported in Sec. 4 and compared with LSA data. We have also proposed an explanation for the fact that
a quantum approach of this kind is so successful in modeling the large collection of data by Hampton. We
have hypothesized a mechanism in which a genuine quantum effect comes into play, namely ‘emergence’.
Two processes, a logical one and a conceptual one, occur simultaneously in the human mind, and our
quantum approach in Fock space enables both processes to be modeled.

We have seen above the deep reasons why our quantum cognition modeling can be successfully applied
to IR. In Sec. 4, we will compare LSA and the quantum model modeling Hampton’s data on concept
combinations [32, 33]. To conclude, we remark that, though our approach is conceptually different form
standard IR approaches, such as LSA, it rests on similar basic ideas, that is, ‘meaning is expressed in texts
by the environment of a term’. We are convinced however that coherence, emergence and contextuality,
and their quantum modeling can express meaning in a way that is similar to how meaning is captured by
the human mind.

4 A comparison with LSA

Before analyzing Hampton’s data by means of LSA, it is worth dwelling on two aspects that allow one to
better grasp the connections between LSA and our quantum cognition modeling in Sec. 3.

(i) LSA typically calculates ‘similarity’ through a complex technical procedure, which involves a real
linear space representation of terms, a document-term matrix, a rank lowering through the reduction to
a diagional matrix by singular value decomposition, dropping small eigenvalues, de-noisifying, and finally
introducing values different from zero also for terms that do not appear in documents. In this way, one
captures the ‘latent nature of similarity’. The calculation results, though most probably correlated to
‘similarity when tested on human subjects’, do not express the latter directly. This entails that a LSA
analysis of membership weights data, as well as a model for membership weights based on similarity [34],
do make sense in this case.

(ii) A LSA process introduces cuts and approximations, so that it models experimental data only
approximately. This is usually considered an advantage, at least with respect to an approach, like our
quantum-theoretic modeling in Secs. 3 and 2, which can deliver models that ‘fit data completely’. Indeed,
since one usually maintains that experiments are not perfect, one is led to believe that approaches that
model these data approximately have a bigger chance to be close to reality, than approaches that model
these data perfectly. There is en error in the above reasoning linked to the difference between ‘models that
derive from a theory’ and ‘ad hoc models’. An ad hoc model is a model specifically made for a situation,
and for such a model it would indeed be suspicious if it could fit data correctly. A model that derives from
a theory, when fitting data correctly, does not constitute a problem. Indeed when for such a model slightly
different data are to be fit, this is also possible by varying some of the parameters. The latter remark
expresses a fundamental difference between our quantum modeling and LSA. In our modeling, ‘also data
that would be slightly different can again be perfectly fitted’, which indicates that our models derive from
a theory, i.e. quantum theory. This is ‘not’ true for LSA: there is ‘no’ corpus of texts that would fit, e.g.,
Hampton’s data, as we see in what follows, which indicates that LSA is closer to an ad hoc way of model
building.

We considered Hampton’s membership weight data for the disjunction of eight pairs of concepts and
25 exemplars for each pair [14, 33]. We computed the similarity between the exemplars of the concepts,
and the similarity with respect to their disjunction, using the LSA Colorado website.1 The LSA similarity

1See the link http://lsa.colorado.edu/.
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website could not compute the similarity of one exemplar in three pairs of concepts, and of two exemplars
on one pair of concepts. Therefore, we computed the similarity of 187 exemplars within the eight pairs of
concepts in total.

The aim of this analysis is twofold. Firstly, we test whether the LSA similarity between the exemplar
of a concept and the term denoting the concept can be used to estimate Hampton’s membership data. To
this end, we compare the LSA similarity with Hampton’s membership data, and we also verify whether
or not a membership model based on similarity, the ‘threshold model’ [34], improves the LSA estimations.
The threshold model is a simple model which assigns membership weight zero to the exemplars that are
below a similarity threshold sl, assigns membership weight one to the exemplars that are above a similarity
threshold sh, and using a parameter st builds a quadratic function to assign membership in the range
[sl, sh]. Secondly, we identify the type of data that the LSA similarity (and the threshold model) delivers.
To this aim, we compare the average number of exemplars that verify (or do not verify) Eqs. (1) and
(2) in Hampton’s data, in the LSA data, and in the threshold model. Whenever Eqs. (1) and (2) are
satisfied, we call the exemplar of a ‘classical’ type. If Eq. (1) is not satisfied, we call the exemplar of a
∆d type, and if Eq. (2) is not satisfied, we call the exemplar of a kd type. Note that both inequalities
cannot be violated simultaneously, and when one of them is violated, the data cannot be modeled by a
Kolmogorovian probability model (see Th. 1).

Note that the LSA-similarity function can be negative. However, the membership function is assumed
to be non-negative. We therefore set the negative similarities to be equal to zero. Indeed, this is not
a significant modification to our data set because only 10 of the 187 tested instances deliver negative
similarities, and none of these values are lower than −0.1.

For reasons of space, we cannot compare concept by concept the performance of LSA and the threshold
model in fitting Hampton’s data. However, we illustrate that neither approach performs well. In Fig. 1, we
compare the LSA and threshold models, using sl = 0.1, st = 0.5, and sh = 0.9, to the Hampton’s data. The
top row shows from left to right Hampton’s data, the LSA similarity, and the threshold model data for the
concepts Home Furnishing in black, Furniture in grey, and Home Furnishing or Furniture in dashed black.
The exemplars of the concepts are on the x-axis, and the membership weights on the y-axis. It is clear
that the range of values that both LSA and threshold model deliver are not close to the actual membership
weigths measured by Hampton. The second row shows the Pearson correlation between Hampton’s data
and the LSA model in the center, and the threshold model on the right. The x-axis identifies the concept
pair, and the y-axis identifies the correlation found for each concept, and their combination, with respect
to Hampton’s data. The coloring of the curves is the same as in the first row: the first concept of the
pair is plotted in black, the second concept in grey and their combination in dashed black. We see that
there is not significant correlation for any concept in both models. We therefore conclude that LSA and
the threshold model using LSA data deliver weak estimations of Hampton’s data, in their values and co-
variations (correlations). To compare the different types of Hampton’s data with the LSA and threshold
models, we compute a graph as follows: we define three nodes {C,D,K}, referring to the types ‘classical’,
∆d, and kd, respectively, and we build an edge x→ y for each exemplar of each pair of concepts. The edge
x → y indicates that the exemplar is of the type x for Hampton’s data, while it is of the type y for the
model we consider. For example, in the LSA data graph, if an arrow is such that D → C, it means that
one exemplar is of the type ∆d for Hampton’s data and of the type ‘classical’ for the LSA data. Self-loops
indicate no type difference between the two data sets, and so on. We draw these graphs in Fig. 2. The LSA
data graph is shown on the left, the threshold model data, with parameters sl = 0.1, st = 0.5 and sh = 0.9,
is shown in the center, and the threshold model with parameters sl = 0.3, st = 0.5 and sh = 0.7, is shown
on the right. Note that we consider all the exemplars of all concept pairs in this graph. In this sense we
plot the average behavior of the models within the concepts. We do not show the detailed analysis for
each pair of concepts, for reasons of space, but we mention that the tendencies we observe in the average
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Figure 1: Contrasting Hampton’s data to LSA and Threshold models.

case are also strong in the majority of the concept pairs. For the three models, the tendency of having

Figure 2: Contrasting Hampton’s data-type to LSA and Threshold models.

the same type for a given exemplar follows the order C,D,K. Where C and D are much larger than K.
Moreover, increasing the threshold region, i.e. increasing sl and decreasing sh, we observe that C becomes
even larger than D, and K decreases to zero. In addition, there is a strong tendency for D exemplars in
Hampton’s data to become C elements in the other models. As to the other transitions, there is not a
concrete preference for the transition D → K and K → D, except for the right plot, where we observe a
larger amount of transitions going from D to K than from K to D. Moreover, there is no preference for
the transition C → K and K → C. Indeed we count a similar amount of cases for each transition. We
infer that LSA and the threshold model using LSA similarity have a weak capacity to identify instances of
the ∆d type, and that they cannot discern properly among instances of the classical and kd type. However,
they have a non-neglectible capacity to identify classical data.

We can draw some general conclusions from the above analysis, as follows.

8



(i) The ‘bag of words’ way of functioning of LSA, where terms and documents are not ‘entities of
meaning’ and ‘collapses of these entities of meaning’, does not give rise to data that are in good agreement
with what the human mind does in the same situation.

(ii) Notwithstanding (i), LSA captures quite some of the non-classical aspects of underextension and
overextension. This can be technically understood from the point of view of our Fock space modeling in
Sec. 3, as follows.

(ii.a) Word vectors are summed, which implies that LSA mainly works in sector 1 of our Fock space
model. Actually, semantic spaces are real rather than complex linear spaces, but this is enough to introduce
the possibility of describing some kind of interference. On the other hand, since ‘only’ sector 1 of Fock
space is taken into account in LSA, the bag of words problem is present: no difference can be made between
‘John hits Mary’ and ‘Mary hits John’. This ordering problem is avoided in our Fock space approach by
also taking into account sector 2, which is a tensor product.

(ii.b) The exclusion in LSA of the smallest eigenvalues after diagonalization introduces ‘latent values’,
i.e. weights become different from zero between terms and documents even if a term does not appear in
a document. By means of this simplification technique, LSA manages to grasp something that is closer to
the ‘states of the entities of meaning’. But it does so in a completely not understood way, as a by-product
of a technique. This suggests that it should be possible to find more sophisticated techniques that directly
and openly work toward the construction of ‘states of the entities of meaning’. This is exactly what the
meaning-based and quantum-inspired approach we put forward in the present paper aims at. And, more,
this is done in a way that we believe to be similar to what the human mind does.
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