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Abstract. Gyrokinetic simulations lead to huge computational needs.
Up to now, the semi-Lagrangian code Gysela performed large simula-
tions using a few thousands cores (65k cores). But to understand more
accurately the nature of the plasma turbulence, finer resolutions are
wished which make Gysela a good candidate to exploit the compu-
tational power of future Exascale machines. Among the Exascale chal-
lenges, the less memory per core issue is one of the must critical. This
paper deals with memory management in order to reduce the memory
peak, and presents an approach to understand the memory behaviour of
an application when dealing with very large meshes. This enables us to
extrapolate the behaviour of Gysela for expected capabilities of Exas-
cale machine.

Keywords: Exascale, Memory scalability, Memory footprint reduction, Plasma
Physics.

1 Introduction

The architecture of the supercomputers will considerably change in the next
decade. Since several years, CPU frequency does not increase anymore. Conse-
quently the on-chip parallelism is dramatically increasing to offer more perfor-
mance. Instead of doubling the clock-speed every 18-24 month, the number of
cores per compute node follows the same law. These new parallel architectures
are expected to exhibit different levels of memory and one tendency of these
machines is to offer less and less memory per core. This fact has been identified
as one of the Exascale challenges [SDM11] and is one of our main concerns.

In the last decade, the simulation of turbulent fusion plasmas in Tokamak
devices has involved a growing number of people coming from the applied math-
ematics and parallel computing fields [ÅCH+13]. These applications are good
candidates to be part of the scientific applications that will be able to use the
first generation of Exascale computers. The Gysela code already efficiently ex-
ploits supercomputing facilities [LGCDP11]. In this paper we especially focus
on its memory consumption. This is a critical point to simulate larger physical
cases while using a constrained available memory.
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Fig. 1. Numerical scheme for one time step of Gysela

A module has been developed to provide a way to generate memory traces for
the specific Gysela application. However, our final goal (not achieved yet) is to
define a methodology and a versatile and portable library to help the developer
optimize memory usage in scientific parallel applications.

The goal of the work presented here is to decompose and reduce the memory
footprint of Gysela to improve its memory scalability. We present a tool which
provides a visualization of the memory allocation/deallocation of Gysela in
off-line mode. An other tool allows us to predict the memory peak depending
on some input parameters. This is helpful to check whether future simulation
memory needs fit into available memory.

This article is organized as follow. Section 2 describes shortly the Gysela
code. Section 3 presents the memory consumption of Gysela. Section 4 presents
the module implemented to generate a trace file of allocation/deallocation in
Gysela. It also illustrates the visualization and prediction tool capabilities to
handle the data of the trace file. Section 5 shows an example of reduction of the
memory footprint and a study of the memory scalability thanks to the prediction
tool. Section 6 concludes and presents some future works.

2 Overview of Gysela

This section gives an overview of the global Gysela algorithm and introduces
the main data structures used.

Gysela is a global nonlinear electrostatic code which solves a gyrokinetic
Vlasov-Maxwell system. Gysela is a coupling between a Vlasov solver that
modelizes the motion of the ions inside a tokamak and a Maxwell solver that
computes the electrostatic field which applies a force on the ions. The Vlasov
equation is solved with a semi-Lagrangian method [GSG+08] and the Maxwell
equation is reduced to the numerical solving of a Poisson-like equation [Hah88].

In this gyrokinetic model, the main unknown is a distribution function f
which represents the density of ions at a given phase space position. The ex-
ecution of Gysela is decomposed in the initialization phase, iterations over
time, and the exit phase. Figure 1 illustrates the numerical scheme used during
a time step. fn represents the distribution function, Φn the electric potential
and En the electric field which corresponds to the derivative of Φn. The Vlasov
step performs the evolution of fn over time and the Field-solver step computes
En. Periodically, Gysela executes diagnostics which export meaningful values
extracted from fn, En and saves the results in HDF5 files.

The distribution function f is a 5 dimensions variable and evolves over time.
The first 3 dimensions are in space, xG = (r, θ, ϕ) with r and θ the polar coor-



dinates in the poloidal cross-section of the torus, while ϕ refers to the toroidal
angle. The two last coordinates are in velocity space: v‖ the velocity along the
magnetic field lines and µ the magnetic moment.

Let Nr, Nθ, Nϕ, Nv‖ be respectively the number of points in each dimension r,
θ, ϕ, v‖. In the Vlasov solver, each value of µ is associated with a set of Mpi pro-
cesses (a Mpi communicator). Within each set, a 2D domain decomposition al-
lows us to attribute to each Mpi process a sub-domain in (r, θ) dimensions. Thus,
a Mpi process is then responsible for the storage of the sub-domain defined by
f(r = [istart, iend], θ = [jstart, jend], ϕ = ∗, v‖ = ∗, µ = µvalue). The parallel de-
composition is initially set up knowing local values istart, iend, jstart, jend, µvalue.
These 2D domains are derived from a classical block decomposition of the r
domain into pr sub-domains, and of the θ domain into pθ sub-domains. The
numbers of Mpi processes used during one run is equal to pr × pθ × Nµ. The
OpenMP paradigm is then used in addition to Mpi (#T threads in each Mpi
process) to use fine-grained parallelism.

3 Memory Bottleneck

3.1 Analysis

A Gysela run needs a lot of amount of memory to be executed. During a run
of Gysela, each Mpi process is associated with a µ value (Section 2) and sees
the distribution function as a 4D array and the electric field as a 3D array. The
remaining of the memory consumption is mostly related to arrays used to store
precomputed values, Mpi user buffers to concatenate data to send/receive and
OpenMP user buffers to compute temporary results. Almost all the arrays are
allocated during the initialization of Gysela.

In order to better understand the memory behaviour of Gysela, each allo-
cation (allocate statement) is logged by storing: the array name, the type, and
the size. Using these data we have done a strong scaling presented on the Table 1
(16 threads per Mpi process). From the memory point of view, the strong scal-
ing study consists in doing a run with a large enough mesh and evaluating the
memory consumption for a process increasing step by step the number of Mpi
processes used for the simulation. If for a given simulation with n processes we
use x Giga Bytes of memory per process, in the ideal case, one can hope that the
same simulation with 2n processes would use x

2 Giga Bytes of memory per pro-
cess. In this case, is it said that the memory scalability is perfect. But in practice,
this is generally not the case because of parallelization memory overheads.

Table 1 shows the evolution of the memory consumption with the number
of cores for a Mpi process. The percentage of memory consumption compared
with the total memory of the process is given for each type of data structures.
The dimensions of the mesh are set to: Nr = 1024, Nθ = 4096, Nϕ = 1024,
Nv‖ = 128, Nµ = 2. This mesh is bigger than the meshes used in production
nowadays, but match further needs, especially those expected for multi-species
physics. The last case with 2048 processes requires 67.5 GB of memory per Mpi
process. We usually launch a single Mpi process per node. One can notice the



Table 1. Strong scaling: static allocation sizes in (GB per Mpi process) and percentage
of the total for each kind of data

Number of cores 2k 4k 8k 16k 32k
Number of Mpi processes 128 256 512 1024 2048

4D structures
209.2 107.1 56.5 28.4 14.4

67.1 % 59.6 % 49.5 % 34.2 % 21.3 %

3D structures
62.7 36.0 22.6 19.7 18.3

20.1 % 20.0 % 19.8 % 23.7 % 27.1 %

2D structures
33.1 33.1 33.1 33.1 33.1

10.6 % 18.4 % 28.9 % 39.9 % 49.0 %

1D structures
6.6 3.4 2.0 1.7 1.6

2.1 % 1.9 % 1.7 % 2.0 % 2.3 %

Total per MPI process in GBytes 311.5 179.6 114.2 83.0 67.5

memory required is much more than the 64 GB of a Helios4 node or than the
16 GB of a Blue Gene/Q node. Table 1 also illustrates that 2D structures and
many 1D structures do not benefit of the domain decomposition. In fact, the
memory cost of the 2D structures does not depend on the number of processes
at all, but rather on the mesh size and the number of threads. On the last case
with 32k cores, the cost of the 2D structures is the main bottleneck. It takes
49 % of the whole memory footprint.

In Gysela, the memory overhead for large simulations is due to various
reasons. Extra memory can be needed, for example to store some coefficients
during an interpolation (for the Semi-Lagrangian solver of the Vlasov equation).
Mpi buffers appear also as memory overhead. The Mpi subroutines accept as
input 1D array which often requires to copy the data we want to send or receive
in an appropriate way. We have reduced some of these memory overheads. It
has improved the memory scalability and has allowed us to run bigger physical
cases.

3.2 Approach

There are two ways to reduce the memory footprint of a parallel application.
On the one hand one can increase the number of nodes used for the simulation.
Since the size of structures which benefit of a domain decomposition will decrease
along with the number of Mpi processes. On the other hand, we can manage
more finely the allocations of arrays in order to reduce the memory costs that
do not scale with the number of threads/Mpi processes and to limit the impact
of all allocated data at the memory peak.

To achieve the reduction of the memory footprint and to push back the
memory bottleneck, we choose to focus on the second approach.

In the original version of the code, most of the variables are allocated dur-
ing the initialization phase. This approach is rightful for structures which are

4 http://www.top500.org/system/177449



persistent variables in opposition to temporary variables that could be dynami-
cally allocated. In this configuration, firstly, one can determine early the memory
space required without actually executing a complete simulation. This allows a
user to know if the case submitted can be run or not. Secondly, it avoids exe-
cution overheads due to dynamic memory management. But a disadvantage of
this approach is that variables used locally in one or two subroutines consume
their memory space during the whole execution of the simulation. As the mem-
ory space becomes a critical point when a large number of cores are employed,
we have allocated a large subset of these as temporary variables with dynamic
allocation. This has reduced the memory peak with a negligible impact on the
execution time. Also, we notice that some persistent variables can be deallo-
cated at the memory peak time which can decrease memory footprint. However,
one issue with dynamic allocations is that we lost the two main advantages of
the static allocations, and particularly the ability to determine in advance the
memory space required to run a simulation.

4 Customised Modeling and Tracing Memory Tools

To follow the memory consumption of Gysela and to measure the memory foot-
print reduction, three different tools has been developed: a Fortran module to
generate a trace file of allocations/deallocations, and a visualization + prediction
Python script which exploits the trace file. The information retrieved from the
execution of Gysela thanks to the instrumentation module is a key component
of our memory analysis. The implementation of these helpful tools is detailed in
the following sections.

4.1 Trace File

Various data structures are used in Gysela, and in order to handle their allo-
cations/deallocations, a dedicated Fortran module was developed to log them
to a file: the dynamic memory trace. As the Mpi processes have almost the same
dynamic memory trace, in the current implementation, we produce a single trace
file for the allocations/deallocations of the Mpi process 0.

Overview. In the community of performance analysis tools dedicated to parallel
application, different approaches exist. But almost all of them relies on trace files.
A trace file collects information from the application to represent one aspect of
its execution: execution time, number of Mpi messages send, idle time, memory
consumption and so on. But to obtain these information, the application have
to be instrumented. The instrumentation can be made at 4 levels: in the source
code, at the compilation time, at the linking step or during the execution (just
in time).

The Scalasca performance tool [GWW+10] is able to instrument at the
compilation time. This approach has the advantage to cover all code parts of the
application and it allows the customization of the retrieved information. This



systematic approach gives a full detailed trace but the record of information
in all subroutine of the code may induce a consequent overhead in execution
time. Also with an automatic instrumentation, it would be difficult to retrieve
the expression of an allocation, like we do (cf. next section). The tool set EZ-
Trace [AMGRT13] offers the possibility to intercept calls to a set of functions.
This tool can quickly instrument an application thanks to a link with third-
party libraries at the linking step. Unlike our approach, this one does not need
an instrumentation of the code but you cannot hope to retrieve the allocation
expression in this approach. The tools Pin [LCM+05], DynamoRIO [BGA03]
or Maqao [DBC+05] produce an instrumentation during the execution time.
The advantage here is the generic aspect of the method. Any program can be
instrumented this way, but unlike our approach, these ones often introduce a
quite large overhead of execution time.

The tool we have developed allows us to measure the performance of Gysela,
from the memory point of view. A visualization tool has been developed to deal
with the provided trace file. It offers a global view of the memory consumption
and an accurate view around the memory peak to help the developer to reduce
the memory footprint. The terminal output of the post processing script gives
precious information about the arrays allocated at the memory peak. Given a
trace file, we can also extrapolate the memory consumption in function of the
input parameters. This allows us to investigate the memory scalability. As far
as we know, there is no equivalent tool to profile the memory behaviour in the
HPC community.

Implementation. A dedicated Fortran module of instrumentation has been
developed. This instrumentation will generate a trace file. Then we practice a
post-mortem analysis on it. The instrumentation module offers an interface, take
and drop, which wraps the calls to allocate and deallocate. The take and
drop subroutines perform the allocation and deallocation of the array handled
and they log their memory action in the dynamic memory trace file.

For each allocation and deallocation, the module logs the name of the ar-
ray, its type, its size and the expression of number of elements. The expression
is required to make prediction. For example, the expression associated to this
allocation:
integer, dimension(:,:), pointer :: array

integer :: a0, a1, b0, b1

allocate(array(a0:a1, b0:b1))

is
(a1 − a0 + 1) × (b1 − b0 + 1) (1)

To be able to evaluate these allocation expressions, the variables inside them
must be recorded. Either the value of the variable is logged, either an arithmetical
expression depending on other recorded variables is logged. This is done respec-
tively by the subroutines write param and write expr. The writing of expression
saves the relationship between parameters in the trace file. This is essential for
the prediction tool (4.3). The following code is an example of recording the
parameters a0, a1, b0, b1:



Fig. 2. Evolution of the dynamic memory
consumption during Gysela execution

Fig. 3. Allocation and deallocation of ar-
rays used in different Gysela subroutines

call write_param(’a0’, 1); call write_param(’a1’, 10)

call write_param(’b0’, 1); call write_expr(’b1’, ’2*(a1-a0+1)’)

To retrieve the temporal aspect of the memory allocation, the entry/exit to
selected subroutines is recorded by the interface write begin sub and write end sub.
This allows us to localize where happen the allocations/deallocations which is
an essential aspect for the visualization step.

4.2 Visualization

In order to address memory consumption, we have to identify the parts of the
code where the memory usage reaches its peak. The log file can be large, some
Mega Bytes. To manage this amount of data, a Python script was developed
to visualize them. This tool will help the developer to understand the memory
cost of the handled algorithms, and so give him some hints how and where it
is meaningful to decrease the memory footprint. These information are given
thanks to two kinds of plot.

Figure 2 plots the dynamic memory consumption in GB along time. The X
axis represents the chronological entry/exit of instrumented subroutines. The
Y axis gives memory consumption in GB. Figure 3 shows which array is used
in which subroutine. The X axis remains identical as previously and the Y axis
shows a name of array. Each array is associated to a horizontal line of the picture.
The allocation of an array matches a rectangular filled in dark or light grey color
in its corresponding line. The width of rectangles depends on the subroutines
where allocation/deallocation happens.

In Figure 2 one can locate in which subroutine the memory peak is reached.
In Figure 3 one can then identify the arrays that are actually allocated when the
memory peak is reached. Thanks to these information, we exactly know where
to modify the code in order to reduce the global memory consumption.

4.3 Prediction

To anticipate our memory requirements to run a given simulation, we need to
predict the memory consumption for a given input parameter set. Thanks to the
expressions of array size and the value or expression of numerical parameters



Fig. 4. First trace visualization Fig. 5. Second trace visualization

contained in the trace file, we can model the memory behaviour off-line. The
idea here is to reproduce allocations with any input set of parameters.

Sometimes, a parameter value cannot be expressed as a one line arithmeti-
cal expression (e.g. multi criteria optimization loop to determine the value).
To manage this case and in order to be faithful, the Fortran piece of code
which returns the value is call from Python script. This is possible thanks to a
compilation of the Fortran needed sources with f2py [Pet09].

By changing the value of input parameters, our prediction Python tool
offers the possibility to extrapolate the Gysela memory consumption on greater
meshes and even on supercomputer configurations which do not exist yet, as the
Exascale ones. The results of this tool are presented in the Section 5.2.

5 Results

5.1 Memory footprint reduction

Reduce the memory footprint is equivalent to cut down the memory peak. The
Figures 4 and 5 show the impact on memory of some modifications of the code.
After analysis of the code, we noticed that during the memory peak, the trans-
position structure ftransp%values and the distribution function fnb%values

contain the same data organized differently. We obtain the trace of the Figure 5
in deallocating fnb%values during the memory peak.

With this tool, one can see that depending on the size of the mesh and
the number of Mpi processes and OpenMP threads, the memory peak moves.
This behavior can be explained by the dependencies between the size of some
characteristic arrays and the value of some input parameters. For example, Mpi
buffer sizes are sensitive to parallelization parameters. In Gysela, the sizes of
temporary buffer are sensitive to the number of points in r and theta dimensions.

The visualization tool gives a new point of view of the source code. This tool
helped us to iteratively reduce the memory overhead and thus to improve the
memory scalability.

5.2 Prediction over large meshes

Scalability. The Tab. 2 presents the strong scaling test with the new dynamic
allocations, and several algorithmic improvements we have done thanks visual-



ization tool (not detailed here). The prediction tool allows us to reproduce the
Tab. 1 on the same mesh, i.e. Nr = 1024, Nθ = 4096, Nϕ = 1024, Nv‖ = 128,
Nµ=2.

Table 2. Strong scaling: memory allocation size and percentage of the total for each
kind of data at the memory peak moment

Number of cores 2k 4k 8k 16k 32k
Number of Mpi processes 128 256 512 1024 2048

4D structures
207.2 104.4 53.7 27.3 14.4
79.2% 71.5% 65.6% 52.2% 42.0%

3D structures
42.0 31.1 18.6 15.9 11.0

16.1% 21.3% 22.7% 30.4% 32.1%

2D structures
7.1 7.1 7.1 7.1 7.1

2.7% 4.9% 8.7% 13.6% 20.8%

1D structures
5.2 3.3 2.4 2.0 1.7

2.0% 2.3% 3.0% 3.8% 5.1%

Total per Mpi process in GBytes 261.5 145.9 81.9 52.3 34.3

The Tab. 2 outputs the memory consumption at the memory peak. It is
obtained by keeping the mesh size constant and changing the number of Mpi
processes and OpenMP threads. The prediction script replays the allocation/de-
allocation of trace file with the new parameters. As you can see on the bigger case
(32k cores), the consumption of the 2D structures were reduced by 20.8%. Also
the memory gain on this case is of 50.8% on the global consumption relatively
to Tab. 1. The 4D structures contain the most relevant data used during the
computation, and they consume the major part of the memory as they should.
The memory overheads have been globally reduced which improves the memory
scalability of Gysela and allows larger simulations to be run.

Investigation. By using the prediction tool, larger meshes can be investigated
and the size of the machine required to handled this amount of data can be
estimated. With the actual implementation, to run the mesh Nr = 2048, Nθ =
4096, Nϕ=2048, Nv‖ =256, Nµ=2, the number of cores needed is of 524k cores,
with 64 GB per process and 16 threads per process.

6 Conclusion

The work described in this paper focuses on a memory modeling and tracing
module and some post processing tools which enable one to improve the memory
scalability. With this framework, the understanding of the memory footprint
behaviour along time is accessible. Also, the generated trace file can be reused
to extrapolate the memory consumption for different input sets of parameter



in off-line mode ; this aspect is important both for end-user who needs greater
resolutions or features with greedy memory needs, and for developer to design
algorithms for Exascale machine.

With these tools, a reduction of 50.8% of the memory peak has been achieved
and the memory scalability of the Gysela has been improved. Our next objec-
tive is to implement a versatile C/Fortran library. The work presented in this
paper is a first step toward building a methodology that helps developers to
improve memory scalability of parallel applications.
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