Skip to main content

The Graph of Cellular Automata Applied for Modelling Tumour Induced Angiogenesis

  • Conference paper
  • First Online:
Book cover Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8385))

  • 1340 Accesses

Abstract

Angiogenesis is the process of formation of vascular network. Blocking tumour induced angiogenesis is one of the treatments applied in oncology. Research involving computer simulations looking for the rules influencing the structure of vascular network and its functionality. This paper summarizes the applications of Graph of Cellular Automata modelling tool, developed by the Author, for modelling Tumour Induced Angiogenesis. Vascular network which is modelled by the graph interacts with surrounding tissue represented by the lattice of automata. The network is developed and reorganized accordingly to locally acting factors (stimulators and inhibitors). The model includes blood flow calculations in a modelled vascular network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carmeliet, P.: Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005)

    Article  Google Scholar 

  2. Mantzaris, N., Webb, S., Othmer, H.G.: Mathematical modeling of tumour-induced angiogenesis. J. Math. Biol. 49(2), 111–187 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Rew, D.A.: Modelling in tumour biology part 1: modelling concepts and structures. Eur. J. Surg. Oncol. 26(1), 87–94 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bergers, G., Song, S.: The role of pericytes in blood-vessel formation and maintenance. Neuro-oncology 7(4), 452–464 (2005)

    Article  Google Scholar 

  5. Topa, P., Dzwinel, W., Yuen, D.: A multiscale cellular automata model for simulating complex transport systems. Int. J. Mod. Phys. C 17(10), 1–23 (2006)

    Article  Google Scholar 

  6. Topa, P.: Towards a two-scale cellular automata model of tumour-induced angiogenesis. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 337–346. Springer, Heidelberg (2006)

    Google Scholar 

  7. Topa, P.: Dynamically reorganising vascular networks modelled using cellular automata approach. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 494–499. Springer, Heidelberg (2008)

    Google Scholar 

  8. Byrne, H., Chaplain, M.A.J.: Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull. Math. Biol. 57, 461–486 (1995)

    Article  MATH  Google Scholar 

  9. Anderson, A.R., Chaplain, M.A.: A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl. Math. Lett. 11(3), 109–114 (1998)

    Article  MATH  Google Scholar 

  10. Plank, M.J., Sleeman, B.D., Jones, P.F.: A mathematical model of tumour growth, regulated by vascular endothelial growth factor and the angiopoietins. J. Theor. Biol. 229, 435–454 (2004)

    Article  MathSciNet  Google Scholar 

  11. Anderson, A.R., Chaplain, M.A.: Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol. 60, 857–900 (1998)

    Article  MATH  Google Scholar 

  12. Lowengrub, J.S., et al.: Nonlinear modelling of cancer bridging the gap between cells and tumours. Nonlinearity 23(1), R1–R96 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Macklin, P., et al.: Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58, 765–798 (2009)

    Article  MathSciNet  Google Scholar 

  14. Stokes, C.L., Lauffenburger, D.A.: Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991)

    Article  Google Scholar 

  15. Anderson, A.R.A., Pitcairn, A.: Application of the hybrid discrete-continuum technique. In: Alt, W., et al. (eds.) Polymer and Cell Dynamics-Multiscale Modeling and Numerical Simulations, pp. 261–279. Birkhauser, Basel (2003)

    Google Scholar 

  16. Owen, M.R., Alarcón, T., Byrne, H.M., Maini, P.K.: Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58(4), 689–721 (2009)

    Article  MathSciNet  Google Scholar 

  17. McDougall, S.R., et al.: Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64(4), 673–702 (2002)

    Article  Google Scholar 

  18. Topa, P., Dzwinel, W.: Using network descriptors for comparison of vascular systems created by tumour-induced angiogenesis. Theor. Appl. Inf. 21(2), 83–94 (2009)

    Google Scholar 

Download references

Acknowledgements

This research is partially supported by AGH-University of Science and Technology grant No. 11.11.230.015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Topa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Topa, P. (2014). The Graph of Cellular Automata Applied for Modelling Tumour Induced Angiogenesis. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55195-6_67

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55194-9

  • Online ISBN: 978-3-642-55195-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics