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1 Introduction

This contribution concerns the iterative solution of singular systems which arise in many appli-
cations. Let us mention the following

• solution of PDE problems with pure Neumann boundary conditions (which is our main
aim), see [7], [8], [20]. Such problems have a specific role in numerical upscaling, see [6],

• solution of Neumann type subproblems in domain decomposition techniques as FETI,
Neumann-Neumann, BDDC methods, see [22], [16],

• analysis of Markov chain problems, computation of stochastic vector, see e.g. [18], [19],
• computer tomography [15], [14] and inverse problems [4], [21].

2 Iterative solution of singular symmetric semidefinite systems

Let us focus on iterative solution of linear systems of the form

Au = b, (1)

where A is a singular, symmetric, positive semidefinite n × n matrix, b ∈ Rn. For u, v ∈ Rn

denote 〈u, v〉 = uT v and ‖u‖ the Eucledian inner product and norm. Due to symmetry of A,
the range R(A) and the null space N(A) are mutually orthogonal with respect to the Eucledian
inner product and the vectors u ∈ Rn can be uniquely decomposed as

u = uN + uR, where uN ∈ N(A) and uR ∈ R(A).

Let b = bN + bR, then the system (1) has infinitely many generalized (least squares) solutions u,

‖Au− b‖ = min{‖Av − b‖, v ∈ Rn} (2)

among which there is a unique least squares solution u∗ with the minimal Eucledian norm. Note
that u∗ = A+b, where A+ is the Moore-Penrose pseudoinverse of A, see [10], [16]. If b ∈ R(A),
i.e. the system (1) is consistent, then the generalized solutions are standard solutions of (1).

Let us assume that (1) is solved iteratively with denoting the i-th iteration ui,

ui ∈ u0 +Ki(A, r
0) = u0 + span{r0, Ar0, . . . , Ai−1r0}, r0 = b−Au0, (3)

where Ki(A, r
0) = span{r0, Ar0, . . . , Ai−1r0} is a Krylov space. Then

ui = u0 + qi−1(A)r0, where qi−1 is a polynomial of order ≤ i− 1. (4)

23



The convergence can be investigated through behaviour of ei = ui − u∗. If ei → 0 then the
iterations converge to the minimal least squares solution u∗. If ei → w, where w ∈ N(A), then
the iterations converge to a (generalized) solution of A.

From (4), it follows that

ei = u0 − u∗ + qi−1(A)(bN +Au∗ −Au0) = pi(A)e0 + qi−1(0)bN , (5)

where pi(λ) = 1 − λqi−1(λ).

If e0 = e0N + e0R then pi(A)e0N = u0
N and pi(A)e0R depends on values pi(λ) on λ ∈ σ(A) \ {0}.

The second term is zero for consistent problems, but otherwise can be convergent if qi−1(0) =
−p′i(0) 6= 0.

The simplest Richardson’s iteration ui+1 = ui + ωA(b− ui) fulfill (3), (4), (5) with

pi(λ) = (1 − ωλ)i, pi(0) = 1, qi−1(0) = −p′i(0) = (i+ 1)ω.

Thus, the method converges (e0 → u0
N ) for the consistent problems, but diverges (the second

terms gradually dominates) for the inconsistent case (bN 6= 0).

To get convergence even for inconsistent case, the method needs a modification. For example,
we can use extrapolation of Richardson’s iterations [17]. For

ūi+1 = ui+1 − (i+ 1)(ui+1 − ui),

we get

ūi+1 − u∗ = ui+1 − u∗ − (i+ 1)(ui+1 − ui) = pi+1(A)e0 + (i+ 1)ω(bN +A(u∗ − ui))

= pi+1(A)e0 + (i+ 1)ωAei = pi+1(A)e0 + (i+ 1)ωA(pi(A)e0 + iωbN ))

= pi+1(A)e0 + (i+ 1)ω(pi(A)Ae0)).

This extrapolated method converges since pi(λ) ≤ qi for all λ ∈ σ(A) \ {0}, where q < 1 for a
suitable ω.

It means that there are ways how to damp the divergence of the null space component of the
iterations. On the other hand, this divergence in the null space component may not cause a
problem in case that we are interested only in quantities, which do not depend on the null space
component, like gradients, fluxes, strains and stresses.

A similar analysis can be done for other iterative methods applied to singular systems, see e.g.
[10]. For the conjugate gradient (CG) method, the convergence can be proven in the consistent
case, see eg. [1]. But the inconsistence influence both N(A) and R(A) components of the
iterations, see [13], [7] and the next section.

3 Solution of Neumann problems

The solution of boundary value problems with pure Neumann boundary conditions arises in
different applications, see the other sections. If the solution of the continuous Neumann problem
exists, then global balance (consistency) conditions like (7) are satisfied. On the contrary, these
conditions guarantee the existence of the (not unique) solution. For example ([20], [7]), for the
Neumann problem,

−div(∇u) = f in Ω and ∇u · n = g in ∂Ω (6)
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the solution exits if and only if ∫

Ω
f dx+

∫

∂Ω
g dx = 0. (7)

In the case (6), (7), if u is a solution, then u+v is a solution for all v ∈ N = span{1}, where 1 is a
constant function in Ω. A finite element discretization then should provide a consistent singular
linear system (1) with the nullspace N(A) = Nh provided by discretization of N . However,
the computer arithmetic and numerical integration errors may cause that the FEM system is
inconsistent and/or N(A) 6= Nh.

Problems with inconsistency and singularity can be treated by using a priori knowledge about N
and Nh. For example, we are able to regularize the problem by fixing some degrees of freedom and
solving the problem RdofAR

T
dofu = Rdof b instead of (1). Here, Rdof is the restriction opperator

omitting the fixed DOF’s. Such a technique is frequently used in engineering community, but
without a special care [9] the modified system matrix RdofAR

T
dof can be very ill-conditioned

which is a serious drawback for the iterative solution.

Using the knowledge of N , other techniques use the projection P : Rn → Rh, where Rh is the
orthogonal complement of Nh. The projector can be constructed as P = I − V (V TV )−1V T ,
where V is a matrix, whose columns create a basis of Nh. Such projector can be applied within
any iterative method. In PCGstab1 algorithm, the projection P is used to project the right hand
side vectors or all residuals during the PCG iterative process. In PCGstab2, the projection P is
applied twice per iteration to project both residuals and computed iterations. Figure shows these
stabilizations of the PCG method. PCGstab2 is equivalent to the replacement of A by PAP
which also makes the system matrix singular. The fully stabilized PCGstab2 was introduced e.g.
in [11]. Note that g = G(r) denotes the action of preconditioner, which can be also nonlinear
(variable, flexible).

given u0

compute r0 = Pa(b−Au0), g0 = PbG(r0), v0 = g0

for i = 0, 1, . . . until convergence do

wi = PcAPdv
i

αi = 〈ri, gi〉/〈wi, vi〉
ui+1 = ui + αiv

i

ri+1 = Pa(r
i − αiw

i)
gi+1 = PbG(ri+1)
βi+1 = 〈gi+1, ri+1〉/〈gi, ri〉
vi+1 = gi+1 + βi+1v

i

end

a) Standard PCG:
Pa = Pb = Pc = Pd = I

b) PCGstab1:
Pa = P
Pb = Pc = Pd = I

c) PCGstab2:
Pa = Pb = P
Pd = Pc = I

or equivalently
Pa = Pb = I
Pc = Pd = P

Figure: PCG algorithms.

Note that an application of PCG to inconsistent system is problematic from two reasons. The
inconsistent part of the right hand side enters the N(A)-part of the iterations and can make
them divergent, but the inconsistent part also enters the formulas for α and β and spoils the
R(A)-part of the iterations, see [13], [5].

4 Application in upscaling

The elastic response of a representative volume Ω is characterized by homogenized elasticity C
or compliance S tensors (S = C−1). The compliance tensor can be determined from the relation

S〈σ〉 = Sσ0 = 〈ε〉, (8)
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where 〈σ〉 and 〈ε〉 are volume averaged stresses and strains computed from the Neumann problem

−div(σ) = 0, σ = Cmε, ε = (∇u+ (∇u)T )/2 in Ω, (9)

σn = σ0n on ∂Ω. (10)

Above, σ and ε denote stress and strain in the microstructure, Cm is the variable local elasticity
tensor, u and n denote the displacement and the unit normal, respectively. The use of Neumann
boundary conditions allows us to get a lower bound for the upscaled elasticity tensor [6].

In analysis of geocomposites (see [6]), the domain Ω is a cube with a relatively complicated
microstructure. The FEM mesh is constructed on the basis of CT scans. Consequently using
the GEM software [3], the domain is discretized by linear tetrahedral finite elements. The arising
singular system is then solved by stabilized PCGstab1 method implemented in different software
and using various preconditioners:

GEM-DD is a solver fully implemented in GEM software. It uses one-level additive Schwarz
domain decomposition preconditioner with subproblems replaced by displacement decom-
position incomplete factorization described in [2]. The resulting preconditioner is symmet-
ric positive definite.

GEM-DD-CG solver differs in preconditioning, which is a two-level Schwarz domain decom-
position arising from the previous GEM-DD by additive involvement of a coarse problem
correction. The coarse problem is created by a regular aggregation of 6× 6× 3 nodes with
3 DOF’s per aggregation. In this case, the coarse problem is singular with a smaller null
space containing only the rigid shifts. The coarse problem is solved only approximately
by inner (not stabilized) CG method with a lower solution accuracy - relative residual
accuracy ε0 ≤ 0.01.

Trilinos ILU is solver running in Trilinos, where the system from GEM is imported. The
preconditioner is similar to GEM-DD, i.e. one-level Schwarz with the minimal overlap and
working on the same subdomains as in GEM-DD are used. The subproblems are replaced
by ILU without displacement decomposition, using a drop tolerance and a fill limit.

Trilinos ML-DD is again running in TRILINOS and uses multilevel-level V-cycle precondi-
tioner exploiting smoothed aggregations with aggressive coarsening, see [12]. Six DOF’s
translational plus rotational are used per aggregation. ILU is applied as smoother at
the finest level, other smoothing is realised by symmetrized Gauss-Seidel. The coarsest
problem is solved by a direct solver.

GEM Trilinos

DD DD+CG ILU ML-DD
#Sd # It Tprep Titer #It Tprep Titer #It Tprep Titer #It Tprep Titer

1 345 224.5 2672.4 ×
2 293 0.3 541.4 137 20.1 256.4 472 135.9 1628.3 43 813.6 804.5
4 302 0.2 302.2 124 20.0 125.9 463 112.5 1022.6 46 445.6 404.9
8 300 0.1 175.3 115 19.9 75.7 441 85.9 517.6 53 302.9 203.8

16 350 0.1 148.5 116 19.9 73.6 387 75.4 443.9 57 335.4 146.9

Table: Solution of the Neumann problem in elasticity, slightly more than 6 million mil DOF’s, stopping

criterion ‖r‖/‖rhs‖ ≤ ε = 10−5. Numbers of iterations (#It), wall-clock time in seconds for solver

preparation (Tprep) and time for performing the iterations (Titer) are provided for various numbers of

subdomains (#Sd; always corresponding to the number of employed processing units). GEM solvers

have not the single processor mode, the ML-DD solver ended on single processor with the message ”Not

enough space for domain decomposition”(×).
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The parallel computing was performed on 32 core NUMA machine at the Institute of Geonics
with eight quad-core AMD Opteron 8830/2.5 GHz processors and 128 GB of DDR2 RAM. Be-
cause of using stabilized PCG and also because we were interested only on strains and stresses,
we concentrate on R(A)-part of the solution and watch in Table only the convergence in the
residual norm.

We can see that the stabilized CG works well. On the other hand the unstabilized version
converge up to a smaller residual tolerance ε = 0.01 − 0.001 and then started to blow up, see
[5]. It indicates that numerical consistency and numerical singularity are not enough, which
was a bit unexpected in our case as we used lowest order linear finite elements and problem
with piecewise constant boundary condition, so that the adopted numerical integration should
be exact. On the other hand, the systems were assembled in single precision.

5 Conclusions

The aim of this contribution was to show techniques for efficient solution of singular symmetric
positive semidefinite problems. We can see that the stabilized PCG is a good choice for systems
arising from the numerical solution of Neumann problems, or more generally problems with a
known small dimensional null space. There are also other possibilities of stabilization as e.g.
the use of additive regularization.

The second aim was a comparison of specialized solvers from the in-house finite element software
GEM and more general solvers from the Trilinos library. We provided some comparison while
this work is still continuing.
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[15] H. Köstler, C. Popa, M. Prümmer, U. Rüde: Towards an algebraic multigrid method for
tomographic image reconstruction. In: P. Wesseling, E. Onate, J. Periaux (eds.): Euro-
pean Conference on Computational Fluid Dynamics ECCOMAS CFD 2006, TU Delft, The
Netherlands, 2006.
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