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Abstract. We investigate the behavior of the Lanczos process when
it is used to find all the eigenvalues of large sparse symmetric matri-
ces. We study the convergence of classical Lanczos (i.e., without re-
orthogonalization) to the point where there is a cluster of Ritz values
around each eigenvalue of the input matrix A. At that point, convergence
to all the eigenvalues can be ascertained if A has no multiple eigenvalues.
To eliminate multiple eigenvalues, we disperse them by adding to A a
random matrix with a small norm; using high-precision arithmetic, we
can perturb the eigenvalues and still produce accurate double-precision
results. Our experiments indicate that the speed with which Ritz clusters
form depends on the local density of eigenvalues and on the unit roundoff,
which implies that we can accelerate convergence by using high-precision
arithmetic in computations involving the Lanczos iterates.
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1 Introduction

Existing software libraries offer us several choices when we wish to compute the
eigenvalues of a sparse matrix. One option is to use a dense eigensolver, such as
one of those implemented in lapack [1], which compute all of the eigenvalues
at a cost of Θ(n3) arithmetic operations. This is a high cost for a sparse matrix.
Krylov-subspace eigensolvers, such as arpack [16], take advantage of sparsity,
but they only offer to compute small, user-selected subsets of the spectrum.
Other algorithms compute the whole spectrum, but they require the matrix to
have a special sparsity structure, such as the MRRR method for symmetric
tridiagonal matrices [7]. In this paper we explore the possibility of accomplish-
ing both goals simultaneously: computing all of the eigenvalues and also taking
advantage of sparsity, even when there is no specific sparsity structure.

The Lanczos process is a long-established and well-known eigensolver [15]
(see also [10,17,23,24,29]). It takes as input an n-by-n Hermitian matrix A and
produces a sequence of matrices T (m) and Q(m) such that

AQ(m) = Q(m)T (m) + r(m)e∗m ,

where Q(m) is an n-by-m orthonormal matrix, T (m) is an m-by-m tridiagonal
matrix, em is the last unit vector of dimensionm, and r(m) is some n-vector. The



sequences Q(m) and T (m) are nested: each iteration of the Lanczos process adds
one column to Q and a row and a column to T . The process is a short-recurrence
Krylov-subspace iteration; in each iteration, the algorithm multiplies one vector
by A and performs a small number of vector operations on vectors of size n.

In exact arithmetic, the residual vector r(m) vanishes after at most k itera-
tions, where k is the number of distinct eigenvalues of A. When r(m) vanishes,
T (m) is an orthonormal projection of A onto the column space of Q, and there-
fore every eigenvalue of T (m) is an eigenvalue of A. For all the starting vectors
except for a set of measure 0, r(m) vanishes after exactly k iterations and all the
eigenvalues of A appear in the spectrum of T (k).

Practitioners quickly discovered that the behavior of Lanczos in floating-point
arithmetic differs significantly from that predicted by the theoretical results. In
particular, the columns of Q quickly lose orthogonality, and r never vanishes in
practice. Researchers mostly explored two families of techniques for addressing
this difficulty. One set of techniques attempts to prevent the loss of orthogo-
nality in Q. This can be done using a full orthogonalization process or using
selective orthogonalization and related techniques [11,20,25,26]. The other set
of techniques [2,31] attempts to extract useful spectral information from the
process after a relatively small number of iterations; this rarely results in the
identification of all the eigenvalues, but it can result in useful approximations to
a subset of the eigenvalues that are important in a given application (e.g., the
smallest ones). These families of techniques are not mutually exclusive; many
Lanczos codes use both.

However, around 30 years ago a group of researchers explored the use of
Lanczos without sophisticated orthogonalization for finding all the eigenvalues
of A [3,9,19]; we refer to such methods as classical Lanczos methods. This line
of research was based on a deep numerical analysis of the Lanczos process that
ultimately showed that in floating point, the eigenvalues of T eventually approx-
imate all the eigenvalues of A [8]. (This fact was recognized years before it was
actually proved; see, for example, [3]). These researchers produced two Lanczos
codes, both in the 1980s. To the best of our knowledge none of the Lanczos
codes that have been published since 1985 have been classical Lanczos. Even
though development of new codes has slowed down, there has been intense on-
going theoretical interest in classical Lanczos, resulting in a large body of results
(see [17] and the numerous references therein). Experimental studies have also
been published [13].

Our goal in this paper is to present the challenges that are involved in devel-
oping a classical Lanczos eigensolver, to describe our ideas for addressing these
challenges, and to explore the feasibility of these ideas. A major tool in our
toolkit is high-precision arithmetic, which our experiments show can be used
to tackle hard matrices with tight clusters of eigenvalues and also to devise a
reliable termination criterion for the algorithm. Our computational cost of using
high-precision arithmetic is negligible because we need it only for forming the
matrix T and not for computing its eigenvalues.



2 Background and Methodology

A key issue in Lanczos solvers, including ours, is deciding which Ritz value
(eigenvalue of T (m)) is an approximate eigenvalue of A. A growing body of work
suggests that non-trivial clusters of Ritz values are only found very close to
eigenvalues of A (see Wülling [32,33], Knizhnerman [14, Theorem 2], Strakoš
and Greenbaum [30], and Greenbaum [12]). That is, if we find two or more
eigenvalues of T (m) that are very close to each other, they normally indicate
the location of an eigenvalue of A; we call such Ritz values doubly-converged.
This phenomenon was already known to Cullum and Willoughby [3] and to
Parlett and Reid [19], but back then there were no provable bounds on the
location of eigenvalues relative to non-trivial Ritz clusters. We write that Ritz
clusters normally indicate eigenvalues because all the results in the literature are
conditioned on properties of the spectrum of A and/or T (m), which might not
hold. However, exceptions seem very rare and some conditions are easily tested
(in particular, conditions that only involve Ritz values).

If all the eigenvalues of A are simple, we can stop Lanczos once we have
n distinct Ritz clusters (doubly-converged eigenvalues). If there are multiple
eigenvalues, we need another strategy. The codes of Cullum and Willoughby [3]
and Parlett and Reid [19] used heuristics to decide when to stop. These heuristics
sometimes cause the algorithms to fail to find all the eigenvalues; these failures
are sometimes silent and sometimes explicit (reported to the user).

In order to address this problem, we use a conceptually simple solution that
we call dispersion. Instead of running Lanczos on A itself, we will run it on A+P ,
where P is a random symmetric matrix (from some appropriate distribution)
with a small norm ‖P‖2 ≤ δ. We choose P so that it is cheap to apply to vectors;
this results in Lanczos iterations that are about as cheap as those performed on
A alone. The perturbation P perturbs the eigenvalues, but only by δ or less.
Hopefully, A + P has no multiple eigenvalues; multiple eigenvalues of A are
transformed into clusters of close but distinct eigenvalues of A+ P . The choice
of P determines how close the eigenvalues of A+P are; we do not have a complete
theory that guarantees good separation with high probability, but experiments
have shown that dispersion works well. We omit these experiments from this
paper, and focus instead on the convergence for a given operator (which the
reader can take to be A+ P ).

The size of the perturbation δ and machine precision εmachine must be tailored
according to the accuracy ε required by the user, using high-precision arithmetic
to reduce εmachine if necessary. The relation ε > δ > εmachine must hold with
sufficient safety margins so that the perturbation can simultaneously separate
multiple eigenvalues and preserve the required accuracy.

An alternative approach to obtaining the required accuracy is to use a first-
order correction. Here, we consider A as a matrix that we obtain from A + P
by adding the perturbation −P . To first order, the eigenvalues of A are equal to
µi−vTi Pvi, where µi and vi are eigenpairs of A+P for i = 1, 2, . . . , n; for details,
see [29, pp. 45–48]. Computing the correction vTi Pvi requires that we compute
the eigenvectors vi, which is accomplished by multiplying the n-by-m matrix of



iterates Q by the eigenvectors of T . This costs Θ(mn) arithmetic operations for
each vi and Θ(mn2) overall. Because m > n, this is at least as expensive as the
Θ(n3) cost of computing the eigenvalues of A directly using a dense eigensolver.
This cost is too high for sparse matrices and therefore we do not use first-order
corrections in this paper.

From a broader perspective, matrices with multiple eigenvalues are a sort of
singularity, a set of measure zero that causes algorithmic difficulty. The idea of
perturbing problems in order to avoid such singularities is well-established in
existing research [4,6,28].

To compute the eigenvalues of T in our experiments we used the lapack
subroutine dstemr and the mpack subroutine rsteqr. Both of these subrou-
tines are symmetric tridiagonal eigensolvers; dstemr implements the MRRR
algorithm and rsteqr the implicit QL or QR methods. The mpack library,
to which rsteqr belongs, is a collection of multiple-precision versions of blas
and lapack subroutines [18]. Although we only needed the eigenvalues of T to
double-precision accuracy, in some of our experiments we used higher precision,
which is why we used mpack.

3 Convergence on Real-World Matrices

Figure 1 explores the behavior of high-precision Lanczos on a large set of real-
world matrices. We ran our code on all 133 symmetric matrices of dimension
2500 or less from the University of Florida Sparse Matrix Collection [5] (we only
used matrices with numerical values; we omitted sparsity-pattern-only matrices).
We did not attempt to disperse multiple eigenvalues; instead, we compared the
eigenvalues computed by our code to those computed by lapack and counted
how many agree to within 10−9‖A‖ or better.3 This tells us when our code fails
to find isolated eigenvalues or entire clusters, but not whether it converges to all
the eigenvalues in a tight cluster.

The results show that Lanczos can compute all the eigenvalues of most of
the matrices after 16n iterations: of over 60% of the matrices with 64-bit arith-
metic, and of more than 70% with 128- and 256-bit arithmetics. After only 4n
or 8n iterations, Lanczos can still compute all the eigenvalues of many matrices.
As we perform more iterations, Lanczos tends to resolve more eigenvalues in
sparse areas of the spectrum. The remaining non-converged eigenvalues tend to
be shadowed by their neighbors.

4 The Effects of Clusters of Eigenvalues

As we saw in Section 3, the key to fast convergence of the Lanczos iteration is
dealing with clusters of eigenvalues. One of the problems caused by clustering has
been discovered by Parlett et al. [21], who showed that a Ritz value can become
3 We used the lapack unsymmetric eigensolver dgeev to compute the eigenvalues.
Although the symmetric subroutine dsyev is more efficient, we did not use it here.
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Fig. 1. Convergence behavior on a set of 133 real-world matrices. The graphs show
the percentage of matrices that have converged to all the eigenvalues after 4n, 8n, and
16n iterations (in brown). The code did not attempt to find the multiplicity of each
eigenvalue. The graphs also show, for matrices that have not converged, the greatest
distance from a non-converged eigenvalue to its nearest neighbor. The graphs show
results for 64-, 128- and 256-bit arithmetic, clockwise from top left. The number of bits
refers to the accuracy of the arithmetic with which T was computed; its eigenvalues
were always computed in 64-bit arithmetic.

fixed between two nearby eigenvalues and hold there for a number of iterations
before finally migrating towards one of the eigenvalues (see also [22,27]). In this
section we study this phenomenon, called misconvergence, and we also show that
the problems caused by clustering go beyond misconvergence.

In our experiments we found that small clusters do not substantially affect
convergence outside the cluster. When we ran Lanczos on a synthetic matrix
whose eigenvalues were evenly spaced in the interval [−1, 1], and then added a
small cluster of 0.05n eigenvalues, we found that adding the cluster caused no
visible artifacts on the plot of the Ritz values produced by the iteration. However,
we found severe misconvergence within the cluster. Figure 2 shows that a Ritz
value that shows up in a cluster tends to wander around near and between
eigenvalues and then typically settles for a long time in-between eigenvalues. As
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Fig. 2. Evolution of Ritz values near a cluster. The cluster consists of 11 eigenvalues
10−12 apart, represented by black horizontal dashed lines. Blue dots represent Ritz
values. A circled numeral k shows the first time that there are k Ritz values near
an eigenvalue. Red circles around the numeral 2 show where double convergence first
occurs. Blue lines are formed by converged or misconverged Ritz values.

more Ritz values show up, a misconverged eigenvalue tends to shift closer to an
eigenvalue, until it actually converges. If we inspect the eigenvalue at 5× 10−12,
for example (the topmost one), we see a misconverged Ritz value that shifts
between 3 or 4 stable locations before converging.

Additional Ritz values appear periodically near an eigenvalue. The most im-
portant effect of clusters is on this periodicity. In a cluster, the periodicity is
longer; a Ritz value appears near a specific eigenvalue less often than near non-
clustered eigenvalues. This is shown in the left plot of Figure 3. This phenomenon
causes Lanczos to converge more slowly in the presence of clusters. If we exam-
ine the raw density of Ritz values, ignoring the distribution of eigenvalues, we
see that the cluster attracts more Ritz values than intervals of the same size
elsewhere in the spectrum. This is shown in the right plot of Figure 3. This in-
creased attraction is not sufficient, however, to compensate for the larger number
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Fig. 3. The number of Ritz values within a distance of 10−12 (left) and 10−10 (right)
from each eigenvalue after 200n iterations. The matrix has order n = 200 and has a
cluster of 10 eigenvalues positioned in the center of the spectrum at regular distances
of 10−12. There are fewer Ritz values near each eigenvalue within the cluster than
elsewhere, yet there are more Ritz values in the cluster area than if there was a single
eigenvalue there.

of eigenvalues in the interval, so convergence to all eigenvalues is still adversely
affected by the cluster.

5 The Effects of High-Precision Arithmetic on the
Lanczos Process

The distribution of Ritz values within a cluster is typically not uniform, just
like within the spectrum as a whole. When eigenvalues in the cluster are evenly
distributed, more Ritz values appear at the edges of the cluster than near its
center, as shown in Figure 4. Even when there are on average 2 or 3 Ritz values
per eigenvalue in the cluster, we may be very far from convergence, because there
are not enough Ritz values near eigenvalues in the center of the cluster.

Increasing the precision of the floating-point arithmetic also increases the at-
tractive power of clusters upon Ritz values, as shown in Figure 5. As we increase
the precision, the number of Ritz values in a cluster increases, speeding up the
convergence. This phenomenon was already observed by Edwards et al. [9], but
it does not appear that Lanczos codes have used this insight.

As the size of an eigenvalue cluster grows, its effect on convergence becomes
devastating, even in high precision. Figure 6 shows that as the size of a cluster
grows, the number of Ritz values in it increases, but not nearly fast enough to
obtain convergence on all eigenvalues. When the cluster is small, say contain-
ing 10 eigenvalues, there are more than 3 Ritz values per eigenvalue after 20n
iterations, even in 64-bit arithmetic (and more Ritz values in higher precision).
When the cluster contains 100 eigenvalues, there is not even a single Ritz value
per eigenvalue after 20n iterations; we cannot expect convergence in that many
iterations. Things get much worse as the cluster size continues to grow.
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Fig. 4. A histogram of the Ritz values within a cluster of 5000 eigenvalues that are
spaced 10−7 apart after 20n = 20 ·7000 Lanczos iterations. Apart from the cluster, the
spectrum contains 2000 eigenvalues spaced evenly between −1 and 1. The histogram
on the left shows the results in 64-bit arithmetic and the results on the right in 128-bit.
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Fig. 5. The number of Ritz values within a distance of 10−9 of each eigenvalue after
200n iterations. The matrix has order n = 200 and has a cluster of 10 eigenvalues
positioned in the center of the spectrum at regular distances of 10−11. The iteration is
carried out using different levels of floating-point precision: IEEE-754 double precision
(64 bits; top left), 128-bit floating point (top right) and 256-bit floating point (bottom).
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Fig. 6. The number of Ritz values within a cluster of eigenvalues that are spaced
10−7 apart after 20n Lanczos iterations. Apart from the cluster, the spectrum contains
2000 eigenvalues spaced evenly between −1 and 1. In both graphs, the X axis shows
the number of eigenvalues in the cluster, ranging from 1 to 5000. (The dimension of
the matrices therefore ranged from 2000 to 7000). On the left, the Y axis shows the
number of Ritz values in the cluster. On the right, the Y axis shows the same number,
but divided by the size of the cluster. Both graphs show the results of computations
in 64-bit arithmetic (double), 128-bit (DD), and 256-bit (QD).

6 Conclusions

Our experiments suggest several conclusions. The results indicate that Lanczos
can find all the eigenvalues of many real-world matrices. When it fails, con-
vergence is impaired by the existence of dense areas in the spectrum, which is
manifested by misconvergence, and more importantly by relatively low density
of Ritz values in such dense areas. High-precision arithmetic helps to neutralize
the effect of clustering, but the level of precision must be commensurate with
the severity of clustering. How can we find the correct level of precision? One
strategy is to start iterating in double precision and then repeatedly increase
the accuracy after completing each sequence of n iterative steps. At the limit we
have infinite accuracy and n additional steps are enough, although we expect a
moderate level of accuracy to be sufficient for most matrices. We do not know
how effective this strategy is in practice; this question is left for future work.

The slowdown in convergence due to clustering may make Lanczos impracti-
cal for problem matrices unless measures are taken to address this issue. Initial
experimentation on small matrices suggests that randomized dispersion is ef-
fective when the spectrum contains clusters but they are not too large, but
ineffective when clusters are very large (say an eigenvalue of multiplicity 3000 in
a matrix of dimension 10000).

These technical conclusions lead us to two higher-level observations. First,
classical Lanczos may be the only practical way of finding all the eigenvalues for
some matrices. If the Θ(n2) space required for dense methods is not available,
and if shift-invert operations are too expensive (e.g., matrices for which there
is no sparse factorization), and if the spectrum contains only mild clustering,



then classical Lanczos may be the method of choice. This motivates further
development of Lanczos codes and techniques.

We are used to resolving details at the scale of ε using floating-point arith-
metic with unit roundoff near ε (≈ 10−16 for 64-bit arithmetic). For symmetric
eigensolvers, resolving eigenvalues at this scale does not mean finding 16 sig-
nificant digits per eigenvalue; it merely means finding 16 digits relative to the
scale of the largest one. For ill-conditioned matrices, resolving eigenvalues to
that scale may not be excessive at all. Our second high-level observation is that
in Lanczos, resolving eigenvalues at the scale of ε may require arithmetic with
significantly smaller unit roundoff, perhaps 10−32 or 10−64, or even less. More
efficient implementations of high-precision floating-point arithmetic will enable
computational scientists to resolve details that are currently beyond reach, like
the eigenvalues of matrices with highly-clustered spectra.
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