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Abstract. In [3] “small” 1-homological model H of a commutative dif-
ferential graded algebra is described. Homological Perturbation Theory
(HPT) [7-9] provides an explicit description of an A, —coalgebra struc-
ture (Aq, Az, As,...) of H. In this paper, we are mainly interested in
the determination of the map A2 : H - H ® H as a first step in the
study of this structure. Developing the techniques given in [20] (inver-
sion theory), we get an important improvement in the computation of
A, with regard to the first formula given by HPT. In the case of purely
quadratic algebras, we sketch a procedure for giving the complete Hopf
algebra structure of its 1-homology.

1 Introduction

In recent years, the relevance of Homological Algebra in the field of Theore-
tical Physics becomes more and more apparent. New emergent areas, such as
Cohomological Physics [23] and Secondary Calculus [25], make use of notions
from Homological Algebra to clearly describe a series of interesting physical pro-
blems. In particular, the role of A -structures [22,19] in mathematical physics
has enormously increased at the beginning of the nineties [6,17,24]. Example of
this was M. Kontsevich’s talk [15] at the International Congress of Mathemati-
cians in 1994, in which he gave a conjectural interpretation of mirror symmetry
as the “shadow” of an equivalence between two triangulated categories associa-
ted with A, -categories. His conjecture was proved in the case of elliptic curves
by A. Polishchuk and E. Zaslow [18].

An A.—algebra (A,my,ma,ms,...) (see, for example, [14]) is a graded mo-
dule A = & jA; endowed with graded maps m; : A®" — A, n > 1 of degree
n — 2 satisfying for n > 1:

> amy, (197 @ ms © 19%) =0,

where the sum runs over all decompositions n = r + s + ¢ and we put u =
r + 1+ t. Therefore, an A-algebra is a differential (m;) graded algebra with
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multiplication o, strongly homotopy associative (this lack of associativity is
measured by a series of morphisms (ms,my,...)). In an analogous way, it is
possible to define an Ay,-coalgebra (C, Ay, As, Az, .. ).

We are interested in the computation of the A ,—algebra and A.,—coalgebra
structures of the 1-homology of a commutative differential graded algebra (briefly
called CDGA) working with coefficients in a commutative ring A with 1 # 0
(usually, the ground ring will be Z). Let us recall that the 1-homology of a
CDGA A is the homology of the reduced bar construction B(A) of A. The com-
plex B(A) is a Hopf algebra, that is, it has both algebra and coalgebra structures
such that they are compatible in some sense. Consequently, its homology carries
Ao —algebra and A,—coalgebra structures (unique, up to isomorphism [13]),
both transferred from respective structures on B(A).

The problem of computing the structure of the A,-algebra of a “small”
1-homological model HBA (that means that there exists a homotopy equiva-
lence between B(A) and HBA, such that H BA has less algebra generators than
B(A)), using homological perturbation tools [10,20] is attacked in [3]. There,
it was realized that this A..-structure reduces to a simple algebra structure
(HBA,m1,m»,0,0,...), where m represents the differential of the complex and
my is the associative product. The determination of ms is immediate and the
attention is focused on the consecution of an “economical” formulation of m; .

Here, we are interested in the dual, but extremely complicated, problem of
calculating the A,-coalgebra structure of HBA. In this structure, (HBA, Ay,
Ay, As,...), Ay coincides with the differential m;, and the first step in sol-
ving this question consists of getting an “efficient” description of Ay : HBA —
HBA®HBA. More concretely, in the present paper we obtain an important im-
provement in the computation of As with regard to the initial formula provided
by Homological Perturbation Theory [10] using the techniques which are com-
prised under the name of inversion theory [20, 3]. In some particular cases, such
as purely quadratic algebras, the model H B A represents the actual 1-homology
of A (that is, m; = A; = 0). In that context, we sketch a “reasonable” algorithm
for giving the complete Hopf algebra structure of HBA.

Finally, let us emphasize that our approach could be useful in providing new
insights on the difficult problem of defining the A.,-Hopf algebra structure [21].

2 Preliminaries

The algebraic setting and notation we need in this paper is conveniently descri-
bed in [3]. In order to put into context the problem we deal with, most relevant
notions of our framework are reviewed.

Let A be a commutative ring with non zero unit which is considered as ground
ring. (A,d4,*4,&4,m4) denotes a commutative differential graded algebra, endo-
wed with an augmentation £, and a cougmentation 77,. We will respect Koszul
conventions.
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Examples of CDGAs are the monogenic algebras: exterior algebra E(x,2n +
1), polynomial algebra P(y,2n) and divided power algebra I"'(y,2n); all of them
with trivial differential.

The reduced bar construction [16] associated to a CDGA A is defined as the
differential graded bimodule B(A):

B(A)=AdKer &, d(Ker £, Ker £,) D D (Ker £, @ Ker &,) D -+ .

An element from B(A) is denoted by a = [ay]---|ay]. There is a tensor gra-
duation given by |al, = Y7  |a:|; as well as a simplicial graduation (|a
[a1] - a.]

s

. = n). The total differential is given by the sum of the tensor one,
which depends on the differential of A, and the simplicial differential, which acts
by using the product of A.

When the algebra A is commutative, it is possible to define a multiplicative
structure upon B(A) (via an operator called shuffle product), so that the reduced
bar construction also becomes a CDGA.

Given two non-negative integers p and ¢ , a (p,q)-shuffle is defined as a
permutation 7 of the set {0,...,p+ g — 1}, such that 7(i) < 7 (j) when 0 <14 <
J<p—-lorp<i<j<p+gqg-1

Let us observe that there are (p ; q) different (p, q)—shuffles.

So, given a CDGA A, the shuffle product % : B(A) ® B(A) — B(A), is
defined, up to sign, by:

[ax] -+~ lap] % [br] - -[b] = > Eer ol lenpre-1)]s
me{(p,q)—shuffles}

where (co, .-+, Cp—1,Cp,-- s Cprg—1) = (a1,...,ap,b1,...bg).
On the other hand, a coproduct can be define on B(A) which provides it a
coalgebra structure,

n

Afar]-+lan]) = D _[ar] -+ lai] @ [ais1] - lan] (1)

=0

Both structures of algebra and coalgebra are compatible in the sense that B(A)
is a Hopf algebra, that is, Ax = (x*®%) (1T ®1) (A® A), where T': B(4) ®
B(A) — B(A) ® B(A) is the morphism that interchanges the factors.

A contraction C : {N,M, f,g,¢} [4,11], also denoted by (f,g,¢) : N £
M, from a differential graded module (N, dy) to a differential graded module
(M,d,) consists in a homotopy equivalence determined by three morphisms
f, gand ¢; f : N. = M, (projection) and g : M, — N, (inclusion) being two
differential graded module morphisms and ¢ : N, — N,.4+1 a homotopy operator.
Moreover, these data are required to satisfy the following rules:

(c1) fg = Lu, (€2) ¢dn+dndp+gf = 1n, (3) f$ =0, (c4) ¢g =0, (c5) ¢p¢ =0.

Therefore, the homology groups of M and N coincide.
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The Basic Perturbation Lemma (BPL) [7] states that given a contraction
C : {N,M, f,g,¢} of chain complexes and a perturbation 0 of dy (that is,
(dy + 6)®> = 0), then there exists a new contraction Cs = (fs,9s,¢s) from
(N,dy +9) to (M,d,, + ds), verifying that

fs=Ff1-6%2¢), gs=2X0g, ¢s=2X0¢, ds=f6Xlg, (2)
where 0 = 3 "(=1)" (¢0)" = 1—¢0 + ¢p5¢6 — -+ + (=1)'(¢0)" + - .
i>0

It is commonly known that every CDGA A “factors”, up to homotopy equiva-
lence, into a twisted tensor product (or TTP) of exterior and polynomial algebras
®f€ 1A, that is, a tensor product of these algebras whose differential structure is
enriched with a differential-derivation, p (see, for example, [16]). We will always
assume that any CDGA A considered in this paper, is factored as a twisted ten-
sor product ®2’GIA¢ (being I a finite set of indexes, I = {1,2,...,n}) of exterior
and polynomial algebras, A4;, of generators x;, such that |z;| < |z;11|. Notice
that, consequently, an order is fixed on the factors.

Given two CDGAs A and A', a semi—full algebra contraction (f,g,¢) : A =
A' [20,2] consists of

— an inclusion, g, which is a morphism of DGAs (i.e., a multiplicative morp-

hism);

— a quasi—algebra projection f, that is, f*, (¢ ® @) =0, f*, (¢ ®g) =0,
f*a (g ® ¢) =0.

— and a quasi—algebra homotopy ¢, that is, p*, (R @) =0, d x4, (p® g) =0,
P*a(g® @) =0.

The class of all semi—full algebra contractions is closed under composition,
tensor product of contractions and perturbation.

Theorem 1. [20]

Let C : {N, M, f, g, ¢} be a semi—full algebra contraction and § : N — N be
a perturbation—derivation of dy. Then, the perturbed contraction Cy, is a new
semi—full algebra contraction.

To obtain a 1-homological model for a CDGA A consists in establishing
a “chain” of semi—full algebra contractions starting at the reduced bar
construction B(A4) and ending up at a CDGA HBA that is free and of finite
type as graded module. An algorithm for computing 1-homological models for
CDGAs was given in [1]. Now we recall the main steps on this algorithm which
are essential in our work.

Three almost—full algebra contractions (that is, semi—full algebra contractions
endowed with multiplicative projections) are used for this purpose:

— The contraction defined in [5] from B(A ® A') to B(A) ® B(A'), where A
and A" are two CDGAs;

Csg : {B(A ® A'), B(A) @ B(A'), fss, 989, P50} ;
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* fag([a1 ®aj| - la, ® ay))

= Z&(aiﬂ ¥ac e an)ﬁA’(a; OV U ~a;)[a1| v la] ® [a;+1| T |aln] (3)
i=0

® gso([ar] -+ lan] ® [ay]- - [ap,]) = [a1] - |an] x [al] - - |al,]
with [a1] - |an] € B(A), [a}]---l|al,] € B(A");
[a] - |an]) = [a1 @€' -+ |a, @ O], [al]--|a] = [ @ ai| - |0 @ay],

where 6 and €' are units on A and A’, respectively.
* up to sign, Pzg(far ® ai]- - |an ®ay])

= Y £t ta o a) @ al] e, @ dl,

0<p<n—q—1<n—1
(@l *ar e %ar aln_q)|00| e s
where i =1 —p —¢; (Ca)s- -+ > Catpra)) = (@ar-ee s Qug, @h_yyysen-0L); T
isa(p+1,q-shuffeand0<p<n-g—-1<n-1.

Given a tensor product ®;c7A; of CDGAs, a contraction from B(®;c14;) to
®ierB(4;) is easily determined, by applying Czs several times in a suitable
way. This new contraction is also denoted by Czg.

— The isomorphism of DGAs described in [5]

CEE : {B(E(U,2’I’L + 1))7F(ﬂa 2n + 2)7f§Eag§E70}7
where

m times m times

fan(ul [u]) = u"™; gse(@™) = [ul
— The contraction also stated in [5]

OEP . {B(P(U,2TL)), E(Q, 2TL + 1)7fEP7.gEP7¢E7P}7

|u] -

where " .
For@) = { D1 Far@ ]l =0
9ar (@) = [ Gar(" ] ] = oot =] o]

If @7 ;A; is a twisted tensor product of exterior and polynomial algebras, the
perturbation p produces a perturbation—derivation ¢ on the tensor differential
of B(®;crA;). Thanks to the contractions above, it is possible to establish, by
composition and tensor product of contractions in a recurring way, a new semi—
full algebra contraction C™ : (f7, g™, ¢") from B(® ,A4;) to @ HBA;,

B(®17'4;) ® Ap) = (917" B(4;)) ® B(An) = (®!'HBA;) ® HBA, , (5)
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where
= (f""® fpa,)fse
9" = g5 (9" @ gpa,)
P = bse + 9se (0" @ gpa, foa, +1® ¢54,)f5s,

HBA,; are exterior or divided power algebras and (f"~*,g"~*,¢"~!) : B(®]7 4;)

0&31 ®?:_11HBA2-. A 1-homological model, HBA,of A = ®f€IAi is then obtained
by perturbing this contraction.

Cl:(fP,g0,¢%) + B(®fcrAi) = (97 HBA;, ), (6)

The differential ds as well as the morphims which compose the new contraction,
are determined by the Basic Perturbation Lemma.

3 Inversion Theory

This section is devoted to the theory that initially appeared in [20] and which
was later used in [3] for the simplification in the computation of ds on the 1-
homological model (6). We further develop inversion theory, though the proof of
almost all the results we state here, are only briefly sketched. Complete proofs
will be widely showed in [12]. These techniques will allows to prove that the
projection fs in (6) is multiplicative, what have important repercussion on the
computation of the A,,—structure of the 1-homological model.

We consider a commutative differential graded algebra under the conditions
already described, ®f€ 1 A;, with A; exterior or polynomial algebras of generators
x;. In order to shorten notation, we will consider A = @77'A; and A’ = A,,.
The following definition complement the one given in [3] for inversions.

Definition 1. Let A® A’ be a CDGA under conditions described above and let
us consider a homogeneous element [a; ®a}|as ®ab]| - - |a, ®al,] from B(A® A').
We say that a component a; ®a} from that element is responsible for an inversion,
if some of these cases takes place:

— a; = 6 and there exists an index j > i with a; # 6. Then a} is responsible
for a ®—inversion.

— whenever A is a polynomial algebra, a; # 6 and there exists an index j > i
such that a; # 6. Then qa; is responsible for a pl-inversion.

— whenever A’ is a polynomial algebra, a} # ¢’ and a;—y =6, a; =0,...a, = 0.
Then aj is responsible for a p—inversion.

Notice that a € B(A ® A') has inversions caused by the “highest” algebra,
A" = A, that is, p-inversions in the case that A, is a polynomial algebra;
inversions caused by the tensor product, that is, ®—inversions; and inversions
caused by the “first” algebra A = ®?:_11Ai, that is, pl-inversions, if n = 2 and A
is a polynomial algebra, or , in the case that n > 2, inversions of the first factor
of A(a) in B(®!''A;), with (up to sign)

A: B(A®A") = B(A)xB(A") : Nla1®ay]| - -+ lap®al] = [a1] - -+ |an] x[a}] - - |a)] -

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html



So, an element has k inversions if there exist k components responsible for
an inversion. We say an element from B(A® A') has k inversions, if it is the sum
of homogeneous elements with, at least, k£ inversions each one of them.

Let us consider the contraction Cpg,
(foe: 958, 080) : B(A® A') = B(A) ® B(4')

We analyze the behavior of the component morphisms with respect to the dif-
ferent types of inversions. For this purpose, we won’t take into account signs in
the referred formulas.

— Lemma 1. fgzg preserves the pl—inversions and p—inversions and is null if
the element had one ®—inversion.
Recalling the formulation for this morphism (3), we realize that only the
elements with the structure [a1 |- - - |ax|aj | -+~ |ay,], with a; € Aand a; € A',
don’t belong to the kernel of this morphism.

— Lemma 2. g54 preserves the number of inversions of the factors (canoni-
cally included in B(A® A")).
Shuffle product doesn’t change either the number of components from each
algebra nor the relative position in between them, so the number of inversions
keep the same or increases.

— Lemma 3. ¢4 produces elements with, at least one more inversion than
the original one.

After evaluating ¢z, over an element, [a1 ® ajlas ® ay---|ap, ® al], one

obtains a sum of elements, that can be sketched as follows:

£Ea(An—gt1%a" " *aap)[a1 ®aq| - |an—p—g—1 ®a;z—p—q—1|(alﬁ*z4" ' '*A'a;’l,—q)|
[@n—p—g| " |an—q] * [a;’b—q+1| e ay ]l (7)

We can check that the number of non degenerate components from the first
algebra stay the same at each term, so the number of pl-inversions doesn’t
come affected.

In the case that A’ is a polynomial algebra, ¢ 55 leaves each p-inversion
the same or changes it into a ®-inversion. If the original element has k p-
inversions, each term of the resultant sum will have k — ¢ p-inversions and,
at least, ¢ ®-inversions, where 0 < ¢ < k. So the £ initial inversions are
preserved.

Concerning ®-inversions, the component (al, * s - -+ ¥4 a;,_,) is always res-
ponsible for a new inversion of this kind, as well as those of the shuffle
product indicated in (7).

Now we consider the already described contraction (5):

(f,9.¢) : B(A® A') = B(A) ® B(A') = HBA® HBA'
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where
f = fn = (fn_l ® fEA’)fE@:
9=9"=0gs0(9""" ®gsar)
¢ =9" = dsg +9E®(¢n_1 @ gparfoar + 1sa ®¢1§A’)f§®

Now, we will study the behavior of f and ¢ with respect to inversions.

— Lemma 4. The evaluation of f over an element from B(A ® A') is null
whenever such an element has, at least, one inversion.
This is clear since the formula for f is: f = (fsa ® fsa’)f5s, s0 the lemma,
follows from lemma 1 and the fact that fszp([v1|---|v™*]) = 0 whenever
k>1.

— Lemma 5. ¢ increases the number of inversions, at least, by one.
The case n = 2 can be proved taking into account that both ¢z, and ¢zg
(lemma 3) satisfy this condition (recall that ¢, = 0) and that shuffle pro-
duct preserves inversions (lemma 2); case n > 2 is proved, then, by induction.

Now we assume there is a perturbation p for the tensor product of A and
A', A® A', and that the perturbation—derivation induced on B(A® A') is § =
1® p+ p® 1. We analyze also, the behavior of the latter with respect to inversions,
coming to the following conclusion.

Lemma 6. The evaluation of § over a homogeneous element from B(A @ A')
with k inversions, produces a sum of elements with at least k — 1 inversions each
one of them.

Let us notice that each component of an homogeneous element from B(A ® A')
is responsible for, at most, one inversion. Since the action of ¢ is reduced to the
application of p to each component a; ® a} of the element [a; ® a}|- -+ |a, @ a}],
then, only one inversion can be anihilated, if any.

4 An A, —Coalgebra Structure

We recall the definition of A, —coalgebra given in [19].
An As—coalgebra is a graded A-module C' endowed with a locally finite
family of morphisms A; : C — C®%, § > 1, such that the degree of A; is i — 2

and
n n—k
Z Z(_l)k+)\+)\k(1®(n—)\—k) ® A ® 1®)\)An+k+1 = 0.
k=1 A=0
Recall that, given a morphism of DG-modules h : M — N, the notation h®? is
i ti
used for the morphism A® e ®h.

Let us observe that in the case n = 3, the following expression is obtained:
(12 A2) Ay — (A3@1) Ay = AzA+(1%20 A) Az + (10A,01) A3+ (A, ©19%) Ay

That is, the morphism As measures the coassociativity of As.
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In the case of the reduced bar construction of a CDGA, the structure of
coalgebra can be trivially considered as an A.,—coalgebra with the differential
d = Ay, the coproduct A = As and A; =0, 7 > 3.

We are interested in the transference of this coalgebra structure from the
reduced bar construction, B(4), of a CDGA, A, to the 1-homological model,
HBA, described in section 2. Using HPT (see [10]), it is clear how to get an
As—coalgebra structure (A;, Ao, Ag,...) on the 1-homological model, where
A1 = ds and whose formulation for Ay and Aj is:

Ay = (fs @ f5) Ags (8)
A3 =[P (-A@1+10A) (s @ gsfs + 1 ¢5) Ags 9)

We focus on the computation of Ay. At first, it would be necessary to evaluate
this morphism over all the module generators of HBA. Nevertheless, the follo-
wing proposition implies the compatibility of As with the product, what makes
possible to do this calculation only for the algebra generators. This proposition
also allows to construct a test of coassociativity for As.

Proposition 1. Let us consider an almost—full algebra contraction, C : {A, A', f,
g,0} and 6 : A — A a data perturbation for C. Then, the perturbed contraction

05 : {(AadA +67£A777A)7 (AladA’ +d57£A’7nA’)7 f57 gs, ¢5}
is also an almost—full algebra contraction.

Proof. For proving that f5 is a morphism of DGAs, let us consider the contrac-
tion

Cs@Cs: {ADA A @A, f50fs,959 g5, $°2 = s @ g fs + 1@ 5 } -
Taking into account condition (¢2) from the definition of contraction,
By 0P+ g = 192 — g2 P
Recall that the Al denotates the morphism Z(1®’“ ®h®@1® k1),

k
By composing to the left with the shuffle product * and then with the morp-
hism f5, we obtain the expression:

s x 01 4 f5 5 21102 = gy — f5 % g B2 £ 82 (10)

Taking into account that gs is a morphism of DGAs and condition (cl), the
second member on the right hand side satisfies

2 2 2 2
fox 95215 = fags* f52 = %[5

So, if we prove that the first member of equality (10) is null, f5 will be a morphism
of DGAs. But the first term in the sum can be written

Fox (05 ® gsfs + 10 ¢5)03) = fs (65 @ g5 f5)02 + f5 x (1 ® ¢g) 617!
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10

where the first term on the right hand side is null because of the fact that fy is
a quasi—algebra projection, in particular, that fs5 x (¢5 ® gs) = 0. On the other
hand, the evaluation of fs5 « (1 ® ¢5)d[?! is always null since ¢, and hence @5,
produces elements with one inversion (lemma 5) that is preserved by the shuffle
product (lemma 2).

Finally, the second summand in the first member of (10) can be expressed
by:

Fix 0105 = 135 5 07 = dis £ 7

(since d[? is a derivation and f5 is a morphism of DG-modules). And now we

reason in the same way as before to conclude that the evaluation of f;s *q&g@z] is
null.

Taking into account this proposition, we can state the following one:

Proposition 2. Let HBA be the 1-homological model of a CDGA A and Ay =
(fs ® f5) Ags. The following property is satisfied:

Are=(o20)(10T®1)(A;®4),
where @ : HBA® HBA — HBA is the product of the CDGA HBA.

Proof. For the proof, it is only necessary to notice that gs and fs; are both
morphisms of DGAs and the fact that B(A) is a Hopf algebra. So the following
chain of equalities can be established:

Aye=(fs2 fs)Agse = (fs0 fs) A * g5
=(fs®f5)(x2%x) (1T ®1) (A A) g5
=(x®% (10T 1) f2*A®?g2?
= (o)1 Tol)((fs © f5) Ags) @ ((fs © f5) Ags)
=(x2%) (1T 1) (A2 A)

We will denote (x @ %) (1 ®T ® 1) by *g.

In particular, this relationship means that, for determining the morphism
Ay, we only need to evaluate it over the generators of HBA as an algebra (a
finite number of elements!).

On the other hand, coassociativity of A would guarantee the coalgebra
structure on HBA. Proposition 1 allows to claim the following one:

Proposition 3. Under conditions described above, if the morphism As is coas-
sociative for the algebra generators, then so it is for the rest of elements of HBA.
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Proof. 1t is sufficient to prove

(A ®@1)Are = (1R A3)As e . (11)
Starting from the first term
(A1) Aye= (A 21) (x2%) (1T ®1) (A ® Ay)

= ((x2%x)(12Te1) (A2 A)2x)(1@T 1) (A ® As)
=(x9%)(19TQ1) @%x)(A29A)01)(1T®1) (A A,y)
=(xg @%) (12?2 (10 T)(T®1) ®1)((A ®1)%2) AF?

=(xp ®%) (1?0 (10 T)(T®1)®1) (A ® 1) Ay)®?

= (3 %) (1?2 (1T) (T 21)21) ((1® Ay) Ay)%?.

An analogous treatment can be done for the right hand side of (11) in order to
get the same result.

Now, we attack the problem of the complexity of the associated algorithm to
the explicit formula of As and we considerably reduce the amount of elementary
operations (in comparison with the algorithm derived from the initial formula-
tion (8)) that are necessary in order to compute this morphism over an algebra
generator.

On the other hand, the responsible for the high complexity in the evaluation
of A, is the homotopy operator, ¢, due, essentially, to the shuffles that are
involved in the formulas of ¢pg and gsg. We intend to reduce this complexity
by eliminating unnecessary terms, and, for this aim, we use the inversion theory
given in section 3.

We recall the formula for As:

Ay = ((f=foo+[odbp—--)R(f = fOp+ [pdp—--)) A(g— g+ popdg—--)

We can observe that f is the last morphism applied. If, at the last stage, after
applying A, the element y obtained by applying ¢, has more than one inversion,
then §(y) will have at least one inversion. This way, each time we go on applying
0 o ¢, we obtain an element with at least one inversion (lemmas 5 and 6), and,
therefore, the final evaluation by f is null (lemma 4). This means that, for the
application of fs ® f5, we only have to consider summands of ¢ which produce
elements with, at most, one inversion.

In consequence, we can establish the following theorem by which we consi-
derably reduce the complexity in the computation of Aj.

Theorem 2. When Ay is applied to an algebra generator element from the 1-
homological model for a CDGA A® A', the formula for ¢ that is involved in the
definition of fs ® fs, can be reduced to the following one:

¢ = &E@ + §§®(¢§A ®9§A’f§A’ +1® ¢§A’)f§®,
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o is the one given in [3] for the simplification in the calculation of ds.
po(lar] -+ |an] ®[a1] - -Jay,]) =[ar] - |an|ai] - -]as,].

When Az is applied to a product of two generators, z = v ey, then, Ay(z) =
(o) (10T ®1)(A2(z) ® Aa(y)) .-

Recall that, the number of terms in the formula for ¢75,§® was

g n?+n
Z 1= 5

n—1n—gq—1 1
> 3 <p+3+ ) — ontl _y 9.

Besides, the formula for gpg is reduced now to 1 term in the sum instead of

mn (the reduction for this morphism in [3] was of n terms).

Even though the reduction in complexity is considerable, the algorithm for
computing A, is still an extremely expensive procedure, due, mainly, to the
morphism ¢ in gs. This fact forced us to look for cases of CDGAs in which this
calculation becomes more reasonable.

5 The Case of Purely Quadratic CDGAs

We consider here an important subset of CDGAs for which A; = 0. Therefore,
the 1-homological model for these algebras coincides with its 1-homology, so if
we study the A.,—coalgebra structure on the model, we are actually considering
such a structure on the 1-homology of a CDGA.

This is the case of the commutative differential algebras whose differential—
perturbation, p, does’nt have any linear summand, that is, if =, x;,,...z;, are

algebra generators, then p(z) = Z Nzt @ @a;'*, with k > 2. We denote

i
this set of algebras by CDGAy, for which we can state the following proposition.

Proposition 4. If A is a CDGAy under the conditions described in section 2,
the formula for Ay in the 1-homological model, HBA, is
Ay = (fef)Ags.

Proof. We recall that fs = >°(—1)'f (§¢)". Notice that the morphism (fJ) is
applied at each summand, except for the first one. Such a composition is null
since § produces elements with, at least, one non-linear component and, hence,
fse becomes zero.
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Definition 2. Let (4, p) be a CDGA, we say A is quadratic, if the action of the
differential-perturbation on every algebra generator x is

p(x) = Z/\i AT A
i
where x;, , x;, are also algebra generators and \; € A.
We say that A is purely quadratic if r;;, =1, r;, =1 for all the indexes i.

Theorem 3. Let A be a purely quadratic CDGA, the Ay —coalgebra structure
of its 1-homology, HBA, reduces to that of coalgebra.

Notice that, in that case, HBA is a Hopf algebra.

Proof. 1t is sufficient to show that ¢5°~ Ags = 0, what implies that A3 =0 =
A4 = -+ and, in particular, since As is null, A, is coassociative and, hence, a
real coproduct on HBA.

[©2]
s

We say a homogeneous element from B(A) is simple if all the components
of such an element are linear. We extent this concept in the natural way to any
element from B(A).

We show that we always obtain simple elements by applying gs to the algebra
generators. As a consequence, this property will be true for all the elements g4
is applied to, since this morphism is multiplicative (theorem 1).

gs(z) = _(-1)" (¢0)" g (x)

i>0
We will prove, by induction on ¢, that (¢d)'g(z) = (¢0)[z] are simple.

- @dg(z) = Po[z] = Z Xi plzi, @ x4, = Z Ai [y |, ], which are simple.
— Let us assume that (¢0)'~'[z] is simple. Then, each term of §(4d)'~'[z] is
1-simple, that is, has a unique quadratic component, xg, ® T, ,

[@1] - [wk—1]Tky @ Tpeo|Ths1| - [Tm] - (12)

Recall that A is factored as A = ®f€IAi, with I = {1,2,...,n} and, there-
fore, the homotopy operator ¢ can be written as follows,

¢ = 9" = ¢pg + QE®(¢n_1 ® gpa, foa, +1®¢EAn)fE®

Let us show, by induction on n, that ¢ turns that quadratic component into
two linear components.
e Case n =2, A; and A, are a polynomial or an exterior algebra each one
of them.
It is clear that fszg is null when applied to elements like (12). Concer-
ning ¢4, if we pay attention to the formula (4),we can check that the
resultant element is is a sum of homogeneous elements with the structure
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[on] - fen—jlor [ [wr—jir |- o |- wpi] % [Brgia ] Jem] ],

which is simple.
e Casen > 2,
1. If o, € Ap, ¢sg acts in the same way as before, as well as fzgq,
which is null.
2. If xy, is the algebra generator of A; with j < n, ¢zg will be null.
On the other hand, fzy will only be no null if the components
corresponding to A,, are just the last, for example, i components,

Tm—it+1,--,Lm. In this case,
foo([1] - [wp—1|wh, @@k |- [Tm—il - - - |2m])
= [w1] |2k @ @hy |- [Tm—i] @ [Tm—iga] - Jom]  (13)

Now, it is easy to verify that

(1@ @sa )([w1] - or, @ k|- [#m—i] @ [Em—is1]| - - |2m]) =0,

since, on one hand, ¢z, is null when applied to simple elements, and
on the other hand, ¢z, = 0.

As for gz ("L ® gaa, f54,), its application to the element (13) gi-
ves place to simple elements, since if gz a, f54, [Cm—i+1] - |Zm] is nOt
null, it is clear that is simple; on the other hand, ¢" ' ([zy| - |z}, ®
Zky| + + * |Tm—i] is simple by induction hypotheses, and finally, by shuf-
fle product we obtain simple elements.

After gs, the morphism A, factors these simple elements as tensor product
of pairs of simple factors.

Finally, we must show that ¢ is null when applied to simple elements and
so will be ¢£5®2]. But, considering, again, the formula of ¢, we realize that it is
easy to prove it by induction. The key is that both ¢z4 and ¢z ,, are null when
applied to simple elements.

Therefore, it is possible to derive an algorithm for computing the complete
Hopf algebra structure of the 1-homology of a purely quadratic algebra. We
intend to implement this algorithm in the near future starting from the program
used in [3].
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