
XMach-1: A Benchmark for
XML Data Management

Timo Böhme Erhard Rahm

University of Leipzig, Germany
http://dbs.uni-leipzig.de

Abstract. We propose a scaleable multi-user benchmark called XMach-1 (XML Data Mana-
gement benchmark) for evaluating the performance of XML data management systems. It is
based on a web application and considers different types of XML data, in particular text docu-
ments, schema-less data and structured data. We specify the structure of the benchmark databa-
se and the generation of its contents. Furthermore, we define a mix of XML queries and update
operations for which system performance is determined. The primary performance metric,
Xqps, measures the query throughput of a system under response time constraints. We will use
XMach-1 to evaluate both native XML data management systems and XML-enabled relational
DBMS.

1 Introduction
The need to efficiently store and manage large amounts of XML data is rapidly increasing due
to the growing use of XML as an improved web format, as the native data format for a variety
of applications and as a standard interchange format especially in the e-business domain. Two
main types of systems are promoted to manage such XML data, namely native XML data stores
[GMW99] [GMD99] [SAG00], and relational/object-relational DBMS augmented with an ex-
tension to store and manipulate XML data [DFS99] [FK99] [SKWW00] [STHZ99]. Native data
stores are tailored to XML requirements and thus promise performance benefits and improved
support for specific XML requirements (e.g., complex document structure, fast path navigation,
text search). Relational and object-relational systems, on the other hand, typically provide good
scalability and a large repertoire of performance-improving techniques, e.g. for query process-
ing, that can be exploited for at least certain usage forms of XML data. Furthermore, they may
avoid having separate data management systems for SQL and XML. An overview of currently
available or announced XML data management systems can be found in [Bou00].

In this paper we propose a multi-user benchmark called XMach-1 (XML Data Management
benchmark) to realistically evaluate the performance of the different approaches to handle
XML data. The benchmark should allow us to identify advantages and shortcomings of availa-
ble XML data management approaches and to quantify their respective performance impact.
Identifying major performance factors for XML storage and query processing also helps devis-
ing enhanced mechanisms for XML data management and is thus useful for both research and
development.

In the next section we briefly discuss related benchmark work, in particular TPC-W. We
then discuss major requirements for an XML data management benchmark. Next, we present
the specification of XMach-1 which is based on a web-oriented usage scenario of XML data.
We specify the structure and generation of the benchmark database as well as the workload mix
consisting of XML queries and update operations. Furthermore, we present the XMach-1 per-
formance metrics.

2 Related Work
So far a comprehensive benchmark for evaluating different approaches for XML data manage-
ment has not been proposed. In [FK99] a benchmark is used to compare alternative mapping
schemes for storing XML data in a relational database. The benchmark is not based on a real

world application and uses a single synthetically created XML document. Only single-user
response times for various query types and update functions on a small database (80 MB) are
determined. One observation was that short response times can be achieved for the considered
queries while reconstruction of an XML document takes a very long time. The benchmark does
not measure throughput performance which is of key importance for XML data management
having to support many users. This can only be captured by a multi-user benchmark.

There are numerous domain-specific database benchmarks, e.g., for OLTP (TPC-C), decisi-
on support (TPC-H, TPC-R, APB-1), information retrieval, spatial data management (Sequoia)
etc. [Gra93] [SFGM93] [ON97] [OLA98] [TPC00] [Cha00]. Furthermore, specific benchmarks
have been proposed for object-oriented (OO1, OO7) and object-relational databases (Bucky)
[CDN93] [CDN97] [CS92]. In early 2000, the e-commerce benchmark TPC-W was released by
the leading database benchmark committee TPC [TPC00]. TPC-W represents a comprehensive
multi-user web benchmark for evaluating sustained peak performance and cost-effectiveness
for a complete e-commerce installation. It defines in detail various web interactions (browsing,
ordering, …) resulting in the invocation of several transaction types on a backend database.
Peak performance is measured in WIPS (web interactions per second) when at least 90% of the
interactions meet a certain response time limit ranging from 3 to 20 s depending on the interac-
tion type. Cost effectiveness is measured in $/WIPS taking into account the cost of the entire
system (hardware, software, etc.) over 3 years. TPC-W is currently not tailored to XML but
defined for a relational database (relational schema, relational data generator). The database
structure and workload mix are largely OLTP-oriented and do thus not cover specific XML
features such as support for complex document structures.

3 Requirements
In [Gra93], Gray argues for the use of domain-specific database benchmarks which should be
relevant (measuring the performance of typical operations for the respective domain), portable
to different platforms, scaleable (applicable to small and large computer systems) and simple.
For XML data management this translates into the use of a web-based application domain,
storage of XML documents and data, and measurement of throughput and response time per-
formance for a variety of XML operations. To support scalability, different database sizes and
load volumes should be supported.

This section analyses the XML-specific requirements w.r.t. data organization and operations
in more detail to motivate the design of the XMach-1 benchmark. It seems tempting to require
that the benchmark should capture most features of the released or soon-to-be-released XML-
based specifications of the World Wide Web Consortium [WWW00][XQR00]. However, this
would make it difficult to achieve a “simple” benchmark. Moreover, it would not be possible to
run the benchmark with currently available systems which typically lack many features. In the
first version of the benchmark we thus concentrate on basic XML features and rather simple
operations that are supported by available systems. For instance, we do not require support for
XML schema, XML namespaces, CDATA sections, entities and a particular XML query lan-
guage. We expect that future versions of the benchmark will include additional features.

With respect to data storage the main usage forms of XML should be captured by the bench-
mark. In particular, text and non-text documents/data should be supported. As shown in Table
1, these document types differ w.r.t content type and preservation of element order. In both
cases, the documents may or may not conform to a schema or DTD (document type definition).
Schema-less XML data is feasible due to the self-describing character of XML.

Text documents contain natural language text marked up in its structure by XML tags. Ob-
viously the order of elements in these documents is important (e.g. order of chapters, para-
graphs). An important difference to other types of XML data is the possibility of mixed content
[BPS98] meaning that there may be subelements or links embedded within text (character
data), e.g. as commonly found in web pages. To support the hypertext character of XML web
documents it is desirable that the benchmark includes link elements.

schema (DTD) Content type order preservation

Text documents yes / no mixed content, natural language yes

Non-text documents yes / no element content yes / no

Table 1: Types of XML data

For data-centric (non-text) applications, we also may have schema-less or schema-based da-
ta. Here the schema-based case is referred to asstructured data.Structured XML data is similar
to conventional database data but often more complex in structure; interchange data in XML
belongs to this category. In contrast to text documents, element content prevails where element
types may either only contain child elements or only character data [BPS98]. While the XML
specification requires element order be preserved, many applications do not depend on it. The
benchmark should thus specify when order preservation is not required so that this relaxation
may be used by the DBMS to improve performance.

The benchmark should define a set of “typical” update operations and queries on these types
of XML data to determine overall performance of an XML data management system. In par-
ticular, new XML documents should be loaded into the database and existing documents should
be deleted or replaced. The query mix should cover hierarchical, sequence (order) -based and
set-oriented queries as well as information retrieval tasks such as text search for phrases. Also
desirable are XML-specific queries such as search for metadata (children/parents of an element,
elements having a specific attribute or name part, …). There should be different result sizes for
queries ranging from single elements to complex element hierarchies. Also desirable are que-
ries requiring the reconstruction of results in a new structure. Furthermore, typical database
functionality such as join, sort and aggregation should be captured.

4 Benchmark description
The XMach-1 benchmark is based on a web application in order to model a typical use case of
a XML data management system. The system architecture shown in Figure 1 consists of four
parts: the XML database, application servers, loaders and browser clients. The database con-
tains a directory structure and XML documents that are assumed to be loaded from various data
sources in the internet by loader programs (e.g. robots crawling the web or a registration tool
where web-site authors can add documents to the database). Every document has a unique URL
which is maintained together with document metadata in the directory structure. The applicati-
on servers run a web (HTTP) server and other middleware components to support processing of
the XML documents and to interact with the backend database.

Figure 1 shows
the System under
Test (SUT) for
which response time
and throughput
performance is de-
termined. It includes
both database and
application servers
similar to TPC-W.
The XMach-1
benchmark is not
meant to evaluate all
kinds of XML-
related processing
but primarily XML

Upload
Delete

LoaderXML Database Application Server

XML documents

Directory

Inter- /
Intranet

BrowserSUT

Query

Retrieve

Figure 1: Components of benchmark architecture

data management. We feel that this does not allow restricting measurements to the database
server because database processing is increasingly spread across the database backend and ap-
plication servers in order to allow for improved throughput, scalability, load balancing and
caching. For instance, mapping XML data to a relational format may be performed either at the
database backend or on the application server.

The number of database and application servers is not predetermined but can be chosen ac-
cording to the performance goals. Caching of XML data at the application server is allowed but
queries must see current data. Analogously to the TPC-W definition of “web page consistency”
we require that query results only contain transaction consistent XML data and that an update
must be reflected in query results within 30 s after the update is committed.

The query and update workload is generated by virtual (emulated) browsers and loaders.
The number of these clients is not predetermined but can be chosen according to the throughput
goals. Interaction with the application server is via a HTTP interface. The clients and the con-
nection with the application servers are not part of the SUT so that the corresponding proces-
sing times and communication delays are not included in query response times. Response times
are measured at the application server and cover the time duration between query arrival and
sending the result in XML format to the client. We do thus not measure client-oriented trans-
formations of XML data, e.g. between XML and HTML.

Our benchmark measures throughput performance for a mix of queries and update operati-
ons that have to be executed within specific response time limits. Two benchmark variants are
distinguished depending on whether the XML documents are schema-less or conform to DTDs
or schemas. This allows us to run the benchmark with systems only supporting one of the two
cases. If both variants are possible, we can evaluate the performance impact of having schema
support.

In the following we first describe the database structure and data generation in more detail.
In 4.3 we present the workload model. Finally we discuss the XMach-1 performance metrics.

4.1 Database structure
The XML database contains both structured data and text documents. The directory contains
metadata about all text documents. It represents structured data as it is schema-based and holds
element content only. Such a structured representation of metadata is found in many XML ap-
plications (e.g., product catalogs for e-commerce). The text documents collected from the web
are referred to as managed documents. Depending on whether we run the schema-based or
schema-less variant of the benchmark they either all conform to a DTD (well-formed and valid
documents) or they are assumed to be schema-less (well-formed but not valid documents).

4.1.1 Directory document
The DTD of the directory document is
given in Figure 2. It maintains a unique
URL for each managed document as
well as other metadata such as document
id, insert time, update time etc.

We do not restrict the directory to a
flat relational structure but use a hierar-
chical XML representation for URLs.
For this purpose, URL components are
stored as separate elements (host, path).
In Figure 3 the directory structure of two
documents with URLs http://www.test-
company.com/products/overview.xml
and http://support.test-company.com/-
help.xml are shown. The sequence of the

<!ELEMENT directory (host+) >
<!ELEMENT host (host+ | path+) >
<!ATTLIST host

name CDATA #REQUIRED >
<!ELEMENT path (path+ | doc_info) >
<!ATTLIST path

name CDATA #REQUIRED >
<!ELEMENT doc_info EMPTY >
<!ATTLIST doc_info

doc_id ID #REQUIRED
loader CDATA #REQUIRED
insert_time NMTOKEN #REQUIRED
update_time NMTOKEN #IMPLIED >

Figure 2: Directory DTD

host address components is reversed to
allow for a hierarchical representation of
the URLs with little redundancy. The
URLs in the example are for illustration
purposes only. The benchmark generates
URLs with other naming conventions as
described in subsection 4.2.1.

Preservation of element order is not re-
quired since the order of elements per
hierarchy level is immaterial.

4.1.2 Managed documents
Most of the benchmark data consists of
managed documents. These text docu-
ments are generated synthetically to sup-
port almost arbitrary numbers of docu-
ments with well-defined contents. Each
document has a unique document id. It is
added to the original XML document du-
ring insert. This id is also kept in the direc-
tory and can be used for join operations.

In the schema-based version of XMach-
1 the documents conform to the generic
DTD shown in Figure 4. Thus the text
documents consist of chapters, sections
and paragraphs for which order preserva-
tion is required. In order to enable specific queries some of the documents will contain an au-
thor tag or link tags to other documents. The link tag should be specified according to the
XLink specification [DMT00]. Since this specification is not yet finalized and current XML
databases may not support it, we allow to replace the xlink attributes by an attribute with name
href. Since paragraphs contain both text and links we have mixed element content.

Having only one DTD for all documents is unlikely to be realistic for larger collections of
documents coming from different
sources. To simulate multiple
DTDs we thus differentiate several
variations of the generic DTD of
Figure 4 by adding an integer
number to all tag names but ‘au-
thor’ and ‘link’. For instance, the
17th DTD will have elements
named document17, chapter17,
author, section17, etc.

In the schema-less variant of
XMach-1 we use the same docu-
ments than for the schema-based
case but no DTDs are kept by the
data management system. This
allows us to compare the perfor-
mance for the two variants to
quantify the impact of using
DTDs.

<directory>
<host name="com">

<host name="test-company">
<host name="www">

<path name="products">
<path name="overview.xml”>

<doc_info doc_id="2"
loader="robot1"
insert_time="20000110152530"/>

</path>
</path>

</host>
<host name="support">

<path name="help.xml">
<doc_info doc_id="3"

loader="robot1"
insert_time="20000612094430"/>

</path>
</host>

</host>
</host>

</directory>

Figure 3: Example directory document

<!ELEMENT document (title, chapter+)>
<!ATTLIST document

author CDATA #IMPLIED
doc_id ID #IMPLIED>

<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT chapter (author?, head, section+)>
<!ATTLIST chapter

id ID #REQUIRED>
<!ELEMENT section (head, paragraph+, section*)>
<!ATTLIST section

id ID #REQUIRED>
<!ELEMENT head (#PCDATA)>
<!ELEMENT paragraph (#PCDATA | link)*>
<!ELEMENT link EMPTY>
<!ATTLIST link

xlink:type (simple) #FIXED "simple"
xlink:href CDATA #REQUIRED>

Figure 4: DTD for managed documents

4.2 Database population and scaling
The XML database is populated with an initial number of managed documents before the
benchmark is executed. To support scaling to different system configurations, four database
sizes are possible with an initial document number of 10.000, 100.000, 1.000.000 or
10.000.000. Due to insert operations in the workload mix (see below) the number of documents
will increase during benchmark execution.

Database population includes adding generated documents to the database and correspon-
ding entries to the directory document. The generation process uses a random number generator
(RNG) for uniformly distributed numbers. In the following we outline how to generate URLs,
text, documents and search phrases for XMach-1.

4.2.1 URL generation for new managed documents
Every document added to the database gets a unique URL and a document id. The URLs do not
use real world names such as com or edu. Instead they are made up of easy to generate strings
following generic rules. This is necessary in order to predict result sets of operations on the
directory structure.

A URL consists of three host elements and one to four path elements with the last path ele-
ment termed document name. Generated URLs have to conform to the following regular ex-
pression syntax:

ahost{1-3}. bhost{1-(N/100)}.chost{1-5}/[apath{1-3}/[bpath{1-3}/ [cpath{1-3}]]] NAME
In this expression, curly braces contain ranges of numbers from which one has to be chosen

by RNG, square brackets denote optional parts. The number of path elements is determined by
RNG. N stands for the initial number of managed documents in the database. The document
name is generated from the document and loader ids: NAME=DOC_ID+LOADER_ID+’.xml’.

4.2.2 Data generation for text (#PCDATA)
In order to get realistic performance results the synthetically generated text within the managed
documents should have similar properties than natural language text (NLT). Words in NLT are
commonly non-uniformly distributed according to Zipf's Law [Zip35]. We use a word list of
the 10,000 most common English words and choose words randomly by applying Zipf’s Law
as described in [GSEB94].

4.2.3 Document generation
The structure of new documents follows the DTDs described in section 4.1.2. We use an algo-
rithm generating document trees of variable (skewed) depth and size. The generation process is
controlled by the parameters and their settings listed in Table 2. If a range is specified the ac-
tual value has to be chosen by a self similar distribution generator following the 80-20 rule as
described in [GSEB94]. The tree generation algorithms first determines the total number of
sections and uses probabilities at every node level to create a new child or to go back to the
parent node. An additional rule ensures that every paragraph has at least one section element.
For an average word
length of 6 characters
(including the space
delimiter) the mean size
of a document is about
10 kB corresponding to
the typical size of current
web documents.

The probability of
having an author attrib-
ute or element is 0.5.
Author names are uni-
formly chosen from a list

Document generation parameter Value

number of sections per document 5 – 150
number of paragraphs per section 1 – 15
number of sentences per paragraph 2 – 30
number of words per sentence 3 – 30
probability of having an author attribute/element 0.5
number of words per head or title element 2 – 12
probability of having a phrase within a sentence 0.01
probability of having a link element within a paragraph 0.05
number of documents per DTD 2 – 100

Table 2: Document generation parameters

of 20,000 last names and 8,000 first names. In order to ensure a reasonable number of docu-
ments per author we do not generate author names randomly from all possible combinations of
first and last names. If N is the total number of managed documents, LN the total number of
last names and FN the total number of first names, we choose the last name from range

[1…MIN(LN;2⋅ 1/10⋅ N)] and first name from[1…MIN(FN;⋅ 1/10⋅ N)]. This results in
about N/5 different author names.

The contents of title and head elements as well as sentences making up the contents of a
paragraph element are generated using the method described in section 4.2.2. The first word of
a sentence starts with an uppercase character. A dot marks the end of a sentence. With a speci-
fied probability a phrase is inserted after the first word of a sentence from a phrase list (see next
subsection). Furthermore, a link element is inserted within a paragraph after the first sentence
according to the link probability. All links must point to a managed document.

For the schema-based version of XMach-1, each document is assigned to one of the DTD
variants according to the specified range for the number of documents per DTD. It is up to the
implementation whether a reference to an external DTD definition is provided or the complete
DTD is included within the document.

4.2.4 Phrase list generation
The XMach-1 operation mix contains searches for phrases in documents. In order to get compa-
rable results we have to know what phrases we can search for and how many hits we get on
average. Therefore a list of search phrases is generated where each phrase is a word triple. The
number of phrases is 1/10th of the initial number of documents. With the values defined in the
previous subsection we will have about one phrase per document so that a specific phrase is
contained in about 10 documents on average. Word triples are chosen from the word list star-
ting with index position 1,000 to prevent having possible stop words in the phrase.

4.3 Operations
The XMach-1 workload mix consists of eight query types and three update types. We define
the operations merely verbally since no XML query standard has been released so far. How-
ever, all operations can be carried out by most available XML data management systems either
by using their respective query language or by an appropriate application program (executed on
the application server that is included in the SUT).

4.3.1 Queries
The query types are listed in Table 3. The operations cover a wide range of processing features
on both structured data and text documents considering the requirements of Section 3. Settings
for query parameters such as URL, author and doc_id are randomly chosen from the values
available in the database. To simulate broken links we require that 5% of the URL requests
refer to undefined URLs.

To illustrate that the queries can be expressed by current language proposals we show the
definitions of Q1 for URL /ahost1.bhost2.chost3/001_loader1.xml and Q4 for doc_id ’123’ in
Quilt syntax [CRF00]:

Q1: FOR $a IN /directory
$b IN /*

WHERE $a/host[@name="chost3"]/host[@name="bhost2"]/host[@name="ahost1"]/
(wrapped) path[@name="001_loader1.xml"]/doc_info/@doc_id = $b/@doc_id
RETURN $b

Q4: FOR $a IN /*[@doc_id="123"]//*[starts-with(name(),"section")]/head
RETURN $a

Table 3: Query operations

4.3.2 Data manipulation operations
Three types of manipulation operations are executed during the XMach-1 benchmark to insert,
delete and update XML documents (Table 4). All operation types change the directory docu-
ment. They must be carried out within transactions to guarantee database consistency. Docu-
ments are generated as described in Section 4.2. For the schema-based variant of the bench-
mark new DTDs are also added to maintain the same average number of documents per DTD.

ID Description Comment

M1 Insert document with given
URL

The loader generates a document and URL and sends
them to the HTTP server

M2 Delete a document with given
doc_id

A robot requests deletion, e.g. because the corres-
ponding original document no longer exists on the web

M3 Update URL and update_time
for a given doc_id

Update directory entry

Table 4: Data manipulation operations

4.3.3 Operation mix
In order to get comparable performance results for different SUTs there must be a fixed compo-
sition of the workload w.r.t. the introduced operation types. Table 5 defines the shares for the
11 operation types. Q1 (get complete XML document for given URL) is the main operation
type which will also be used for determining throughput. Its share should be 30% or less. For
the other operation types, the percentages given in Table 5 indicate the minimal shares. They
can be higher but would then reduce the Q1 share and thus throughput.

ID Description Comment

Q1 Get document with given URL Return a complete document (complex
hierarchy with ordering preserved)

Q2 Get doc_id and URL from documents con-
taining a given phrase in paragraph elements

Text retrieval query. The phrase is cho-
sen from the phrase list. Join needed to
get URL for qualifying documents

Q3 Start with first element which name starts
with ‘chapter’ and recursively follow first
element which name starts with ‘section’.
Return each of the ‘section’ elements

Simulates navigating a document tree
using sequential operators

Q4 Return flat list of head elements which are
children of elements whose names start with
‘section’ from a document given by doc_id

Restructuring operation simulating crea-
tion of a table of contents

Q5 Get document name (last path element in
directory structure) from all documents
which are below a given URL fragment

Browse directory structure. Operation on
structured unordered data

Q6 Get doc_id and id of parent element of au-
thor element with given content

Find chapters of a given author. This
tests efficiency of index implementation

Q7 Get doc_id from documents which are refer-
enced by at least four other documents

Get important documents. Needs some
kind of group by and count operation

Q8 Get doc_id from the last 100 updated docu-
ments having an author attribute

Needs count, sort, join and existential
operations and accesses metadata

Only 2% of the operations are updates. Since we have
three times as many insert (M1) than delete (M2) operations,
the total number of documents increases during the bench-
mark proportionally to the throughput and execution time.
This stresses transaction and cache consistency management
as well as query processing, e.g., to efficiently process newly
added documents.

4.4 Performance metrics and benchmark execution
XMach-1 is a multi-user benchmark so that throughput is our
primary performance metric. For the schema-based version of
XMach-1 throughput is measured in

Xqps (XML queries per second)
In the schema-less case we measure throughput inXqpssl

(Xqps schema less). In both cases we only consider the num-
ber of executed Q1 queries since the fixed workload compo-
sition guarantees a corresponding number of executions for the other operation types. Only
Xqps values referring to the same database size (initial number of documents) can be compared
with each other. The benchmark execution time has to be at least one hour.

The throughput must be obtained while guaranteeing short response times since it is rather
easy to increase throughput without response time limits. Analogously to the TPC specifica-
tions we require that for all query types (Q1-Q8) and M3 90% of the operations be executed
under 3 s. The insert and delete operations M1 and M2 are not time critical so that we set the
90th percentile response time limit to 20 s. As discussed above, the response times include the
execution times at the database and application server but not at the client.

To achieve a true multi-user environment with a realistic number of concurrent clients we
require that each browser and loader runs at most one operation at a time. Furthermore, after
completing an operation there is a think time between 1 and 10 s (chosen by RNG) before the
next operation is started. The benchmark results to be reported include the throughput perform-
ance, for all operation types their execution frequency and 90% response times, the time to load
the database as well as the sizes of the XML database and index structures.

Cost effectiveness in $/Xqps ($ / Xqpssl.) can be measured by determining the $ cost of the
SUT and dividing it by the throughput in Xqps (Xqpssl.). For a specification of how to deter-
mine system cost we refer to the TPC-W specification [TPC00].

5 Summary and outlook
We have presented the design of XMach-1, a scaleable multi-user benchmark for evaluating the
performance of XML data management systems. It measures the throughput of a generic XML-
based web application consisting of a XML database and middleware components. The data-
base contains both structured data and text documents. Two benchmark variants with separate
throughput metrics, Xqps and Xqpssl, are distinguished for schema-based and schema-less
XML documents. We have specified the structure of the benchmark database and its popula-
tion. Furthermore, we defined a workload mix consisting of eight query and three update types.
The proposal borrows several elements from proven TPC benchmarks.

We believe XMach-1 meets the general benchmark requirements of relevance, portability,
scalability and simplicity as well as the XML-specific requirements discussed in section 3. In
particular, by focussing on basic XML features it can be run for available systems, both XML-
enabled relational DBMS and native XML data management systems, to compare their perfor-
mance. Also, it will be easy to define XMach-1 in terms of standardized versions of XML
schema and XML query once they are available.

We have started to develop a XMach-1 benchmark environment for different XML data
management systems and expect to have performance results soon available.

Operation ID Percentage

Q1 <= 30

Q2 >= 20

Q3, Q4, Q5, Q6 >= 10 each

Q7, Q8 >= 4 each

M1 >= 0,75

M2 >= 0,25

M3 >= 1

Table 5: Operation mix com-
position

Acknowledgements:We would like to thank Jim Gray, Phil Bernstein, Ralph Busse and the
reviewers for helpful comments.

References
[Bou00] R. Bourret: XML Database Products. Nov. 2000.

http://www.rpbourret.com/xml/XMLDatabaseProds.htm
[BPS98] T. Bray, J. Paoli, C. M. Sperberg-McQueen: Extensible Markup Language (XML)

1.0. http://www.w3.org/TR/REC-xml, 1998
[CDN93] M. J. Carey, D. J. DeWitt, J. F. Naughton: The OO7 benchmark. InACM SIGMOD

Conference, pp. 12-21, Washington, 1993
[CDN97] M. Carey, D. DeWitt, J. Naughton, et al.: The Bucky Object-Relational Bench-

mark. InProc. ACM SIGMOD Conf., pp. 135-146, Tucson, AZ, 1997
[CRF00] D. D. Chamberlin, J. Robie, D. Florescu: Quilt: An XML Query Language for

Heterogeneous Data Sources. InProc. 3rd ACM SIGMOD WebDB workshop, 2000
[Cha00] A. B. Chaudhri: Benchmarks. 2000.

http://www.soi.city.ac.uk/~akmal/html.dir/benchmarks.html
[CS92] R. Catell, J. Skeen: Object operations benchmark. InACM Transactions on Data-

base Systems, 17(1), pp. 1-31, 1992
[DFS99] A. Deutsch, M. Fernandez, D. Suciu: Storing semistructured data with STORED.

In Proc. ACM SIGMOD Conf., pp. 431-442, Philadephia, 1999
[DMT00] S. DeRose, E. Maler, D. Orchard, B. Trafford: XML Linking Language (XLink)

Version 1.0. http://www.w3.org/TR/xlink/, 2000
[FK99] D. Florescu, D. Kossmann: Storing and Querying XML Data using RDBMS. In

IEEE Data Engin. Bulletin, Special Issue on XML, 22(3), pp. 27-34, 1999
[GMD99] GMD: GMD-IPSI XQL Engine. http://xml.darmstadt.gmd.de/xql/, 1999
[GMW99] R. Goldman, J. McHugh, J. Widom: From Semistructured Data to XML: Migrat-

ing the Lore Data Model and Query Language. InProc. 2nd ACM SIGMOD
WebDB workshop, pp. 25-30, Philadelphia, 1999

[Gra93] J. Gray ed.: The Benchmark Handbook. Morgan Kaufmann, San Mateo, CA, 1993.
http://www.benchmarkresources.com/handbook/

[GSEB94] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, P. Weinberger: Quickly generat-
ing billion-record synthetic databases. InProc. ACM SIGMOD Conf., 1994

[OLA98] OLAP Council: APB-1 OLAP Benchmark Release II. , 1998.
http://www.olapcouncil.org/research/bmarkly.htm

[ON97] P. E. O'Neil: Database Performance Measurement. InThe Computer Science and
Engineering Handbook, CRC Press, 1997: 1078-1092

[SFGM93] M. Stonebraker, J. Frew, K. Gardels, J. Meredith: The Sequoia 2000 Benchmark.
SIGMOD Conference, pp. 2-11, 1993

[SKWW00] A. Schmidt, M. L. Kersten, M. Windhouwer, F. Waas: Efficient Relational Storage
and Retrieval of XML Documents. InProc. 3rd ACM SIGMOD WebDB workshop,
pp. 47-52, Dallas, 2000

[SAG00] Software AG: Tamino - The Information Server for Electronic Business.
http://www.softwareag.com/tamino/, 2000

[STHZ99] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, J. Naughton: Rela-
tional Databases for Querying XML Documents: Limitations and Opportunities. In
Proc. 25th VLDB conf., pp. 302-314, Edinburgh, 1999

[TPC00] Transaction Processing Performance Council. http://www.tpc.org, 2000
[WWW00] World Wide Web Consortium (W3C): Extensible Markup Language (XML).

http://www.w3.org/XML, 2000.
[XQR00] D. Chamberlin, P. Fankhauser, M. Marchiori, J. Robie: XML Query Requirements.

W3C Working Draft,http://www.w3.org/TR/xmlquery-req, 2000
[Zip35] G. K. Zipf: The Psychobiology of Language. Houghton Mifflin, Boston, 1935

