Skip to main content

Computational Methods for Time Series Analysis

  • Conference paper
Book cover Compstat

Abstract

By the progress of fast computing facilities and various computing technologies, it becomes realistic to apply computer intensive methods to statistical analysis. In time series analysis, sequential Monte Carlo methods was developed for general state space models which enables to consider very complex nonlinear non-Gaussian models.

In this paper, we show algorithms, implementations and parameter estimation for Monte Carlo filter and smoother. Various ways of the use of parallel computer are also discussed. The usefulness of the general state space modeling is illustrated with several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alspach, D. L., and Sorenson, H. W., (1972). Nonlinear Bayesian Estimation Using Gaussian Sum Approximations. IEEE Transactions on Automatic Control, AC-17, 439–448.

    Article  Google Scholar 

  • Anderson, B. D. O., and Moore, J. B., (1979). Optimal Filtering. Prentice-Hall, New Jersey.

    MATH  Google Scholar 

  • Andrede Netto, M. L., Gimeno, L. and Mendes, M. J., (1978). On the optimal and suboptimal nonlinear filtering problem for discrete-time systems, IEEE Trans. Automat. Control, 23, 1062–1067.

    Article  Google Scholar 

  • Doucet, A., de Freitas, N. and Gordon, N. (2001). Sequential Monte Carlo Methods in Practice. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Gordon, N. J., Salmond, D. J. and Smith, A. F. M., (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings-F, 140, 107–113.

    Google Scholar 

  • Harrison, P.J. and Stevens, C.F. (1976). Bayesian Forcasting, Journal of the Royal Statistical Society, Series B, 38, 205–247.

    MathSciNet  MATH  Google Scholar 

  • Harvey, A.C. (1989). Forecasting structural time series models and the Kalman filter, Cambbridge University Press, Victoria, Australia.

    Google Scholar 

  • Higuchi, T. (1997). Monte Carlo filter using the Genetic algorithm operators, Journal of Statistical Computation and Simulation, 59, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Higuchi, T. (2001). Evolutionary Time Series Model with Parallel Computing, Proceedings of the 3rd Japan-US Joint Seminar on Statistical Time Series Analysis, Kyoto, Japan, June 18–22, 2001, 183–190.

    Google Scholar 

  • Kitagawa, G., (1987). Non-Gaussian state-space modeling of nonstationary time series (with discussion), Journal-of the American Statistical Association, 82, 1032–1063.

    MathSciNet  MATH  Google Scholar 

  • Kitagawa, G., (1991). A nonlinear smoothing method for time series analysis, Statistica Sinica, 1, 371–388.

    MathSciNet  MATH  Google Scholar 

  • Kitagawa, G., (1994). The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother, Annals of the Institute of Statistical Mathematics, 46, 605–623.

    Article  MathSciNet  MATH  Google Scholar 

  • Kitagawa, G., (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space model, Journal of Computational and Graphical Statistics, 5, 1–25.

    MathSciNet  Google Scholar 

  • Kitagawa, G., (1998). Self-Organizing State Space Model, Journal of the American Statistical Association, 93, 1203–1215.

    Google Scholar 

  • Kitagawa, G. and Gersch, W., (1996). Smoothness Priors Analysis of Time Series, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Ljung, L., (1979). Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems, IEEE Transactions on Automatic Control, AC-24, 36–50.

    Article  MathSciNet  Google Scholar 

  • Solo, V., (1980). Some aspect of recursive parameter estimation, International Journal of Control, 32, 395–410.

    Article  MathSciNet  MATH  Google Scholar 

  • Takahashi, A. and Sato, S. (2001). A Monte Carlo filtering approach for estimating the term structure of interest rates, Annals of the Institute of Statistical Mathematics, 53, 50–62.

    Article  MathSciNet  MATH  Google Scholar 

  • West, M., Harrison, P. J. and Migon, H. S., (1985). Dynamic generalized linear models and Bayesian forecasting (with discussion), Journal of the American Statistical Association, 80, 73–97.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kitagawa, G., Higuchi, T., Sato, S. (2002). Computational Methods for Time Series Analysis. In: Härdle, W., Rönz, B. (eds) Compstat. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57489-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57489-4_2

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1517-7

  • Online ISBN: 978-3-642-57489-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics