Skip to main content

Viscosity and Relaxation Approximation for Hyperbolic Systems of Conservation Laws

  • Chapter

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 5))

Abstract

These lecture notes deal with the approximation of conservation laws via viscosity or relaxation. The following topics are covered:

The general structure of viscosity and relaxation approximations is discussed, as suggested by the second law of thermodynamics, in its form of the Clausius-Duhem inequality. This is done by reviewing models of one dimensional thermoviscoelastic materials, for the case of viscous approximations, and thermomechanical theories with internal variables, for the case of relaxation.

The method of self-similar zero viscosity limits is an approach for constructing solutions to the Riemann problem, as zero-viscosity limits of an elliptic regularization of the Riemann operator. We present recent results on obtaining uniform BV estimates, in a context of strictly hyperbolic systems for Riemann data that are sufficiently close. The structure of the emerging solution, and the connection with shock admissibility criteria is discussed.

The problem of constructing entropy weak solutions for hyperbolic conservation laws via relaxation approximations is considered. We discuss compactness and convergence issues for relaxation approximations converging to the scalar conservation law, in a BV framework, and to the equations of isothermal elastodynamics, via compensated compactness.

Research partially supported by the Office of Naval Research, the National Science Foundation, and the TMR programme HCL # ERBFMRXCT960033.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brenier Y., Corrias L. Natalini R., Relaxation limits for a class of balance laws with kinetic formulation, (1997) (preprint).

    Google Scholar 

  2. Caflisch R.E and Papanicolaou G.C., The fluid dynamic limit of a nonlinear model of the Boltzmann equation, Comm. Pure Appl. Math. 32 (1979), 589–616.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen G.-Q., Propagation and cancellation of oscillations for hyperbolic systems of conservation laws, Comm. Pure Appl. Math. 44 (1991), 121–139.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen G.-Q. Levermore C.D. and Liu T.-P., Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1994), 789–830.

    MathSciNet  Google Scholar 

  5. Coleman B.D. and Noll W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal. 13 (1963), 167–178.

    Article  MathSciNet  MATH  Google Scholar 

  6. Coleman B.D., Thermodynamics of materials with memory, Arch. Rational Mech. Anal. 17 (1964), 1–46.

    MathSciNet  Google Scholar 

  7. Coleman B.D. and Mizel V.J., Existence of caloric equations of state in thermodynamics, J. Chem. Phys. 40 (1964), 1116–1125.

    Article  MathSciNet  Google Scholar 

  8. Coleman B.D. and Gurtin M.E., Thermodynamics with internal state variables, J. Chem. Physics 47 (1967), 597–613.

    Article  Google Scholar 

  9. Coquel F. and Perthame B., Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM Num. Anal. (to appear).

    Google Scholar 

  10. Crandall M., The semigroup approach for first order quasilinear equations in several space variables, Israel J. Math., 12 (1972), 108–132.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dafermos C.M., Solution of the Riemann problem for a class of hyperbolic conservation laws by the viscosity method, Arch. Rational Mech. Analysis 52 (1973), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dafermos C.M., Structure of solutions of the Riemann problem for hyperbolic systems of conservations laws, Arch. Rational Mech. Analysis 53 (1974), 203–217.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dafermos, C.M., Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity. SIAM J. Math. Anal. 13 (1982), 397–408.

    Article  MathSciNet  MATH  Google Scholar 

  14. Dafermos C.M., Contemporary issues in the dynamic behavior of continuous media, Lecture Notes, Brown University, 1985.

    Google Scholar 

  15. Dafermos C.M., Admissible wave fans in nonlinear hyperbolic systems, Arch. Rational Mech. Analysis 106 (1989), 243–260.

    Article  MathSciNet  MATH  Google Scholar 

  16. Dafermos C.M. and DiPerna R.J., The Riemann problem for certain classes of hyperbolic systems of conservation laws, J. Diff. Equations 20 (1976), 90–114.

    Article  MathSciNet  MATH  Google Scholar 

  17. DiPerna R., Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Analysis 60 (1983), 75–100.

    Article  MathSciNet  Google Scholar 

  18. DiPerna R., Measure-valued solutions to conservation laws, Arch. Rational Mech. Analysis 88 (1985), 223–270.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ercole G., Delta-shock waves as self-similar viscosity limits, (1997) (preprint).

    Google Scholar 

  20. Faciu C. and Mihailescu-Suliciu M., The energy in one-dimensional rate-type semilinear viscoelasticity, Int. J. Solids Structures 23 (1987), 1505–1520.

    Article  MathSciNet  MATH  Google Scholar 

  21. Fan 11.-T., A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase (II), Arch. Rational Mech. Analysis 116 (1992), 317–338.

    Article  Google Scholar 

  22. Fan H.-T., One-phase Riemann problem and wave interactions in systems of conservation laws of mixed type SIAM J. Math. Anal. 24 (1993), 840–865.

    Article  MathSciNet  MATH  Google Scholar 

  23. Gurtin M.E., Williams W.O. and Suliciu I., On rate type constitutive equations and the energy of viscoelastic and viscoplastic materials, Int. J. Solids Structures 16 (1980), 607–617.

    Article  MathSciNet  MATH  Google Scholar 

  24. Heibig A., Existence and uniqueness of solutions for some hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 126 (1994), 79–101.

    Article  MathSciNet  MATH  Google Scholar 

  25. Jin S. and Xin Z., The relaxing schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995), 235–277.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kalasnikov A.S., Construction of generalized solutions of quasi-linear equations of first order without convexity conditions as limits of solutions of parabolic equations with a small parameter, Dokl. Akad. Nauk SSSR 127 (1959), 27–30 (in Russian).

    MathSciNet  MATH  Google Scholar 

  27. Katsoulakis M.A. and Tzavaras A.E., Contractive relaxation systems and interacting particles for scalar conservation laws, C. R. Acad. Sci. Paris, Sér. I Math. 323 (1996), 865–870.

    MathSciNet  MATH  Google Scholar 

  28. Katsoulakis M.A. and Tzavaras A.E., Contractive relaxation systems and the scalar multidimensional conservation law, Comm. Partial Differential Equations 22 (1997), 195–233.

    Article  MathSciNet  MATH  Google Scholar 

  29. Katsoulakis M.A. and Tzavaras A.E., Multiscale analysis of interacting particles: Relaxation schemes and scalar conservation laws, (1998) (submitted)

    Google Scholar 

  30. Keyfitz B. and Kranzer H., A viscosity approximation to a system of conservation laws with no classical Riemann solution, in “ Proceedings of International Conference on Hyperbolic Problems”, Bordeaux, 1988.

    Google Scholar 

  31. Keyfitz B. and Kranzer H., Spaces of weighted measures for conservation laws with singular shock solutions, J. Differential Equations 118 (1995), 420–451.

    Article  MathSciNet  MATH  Google Scholar 

  32. Kim Y.-J., A self-similar viscosity approach for the Riemann problem in isentropic gas dynamics and the structure of its solutions, (1998) (preprint).

    Google Scholar 

  33. Kruzhkov S.N., First order quasilinear equations with several independent variables, Math. USSR Sbornik 10 (1970), 217–243.

    Article  MATH  Google Scholar 

  34. Lax P.D., Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10 (1957), 537–566.

    Article  MathSciNet  MATH  Google Scholar 

  35. Lax P.D., Shock waves and entropy, in: “Contributions to Nonlinear Functional Analysis.” E.H. Zarantonello, ed. New York: Academic Press, 1971, pp. 603–634.

    Google Scholar 

  36. LeFloch P.G. and Tzavaras A.E., Existence theory for the Riemann problem for non-conservative hyperbolic systems, C.R. Acad. Sci., Paris, Série 1 323 (1996), 347–352.

    MathSciNet  MATH  Google Scholar 

  37. LeFloch P.G. and Tzavaras A.E., Representation of weak limits and definition of nonconservative products, (1997) (preprint).

    Google Scholar 

  38. LeFloch P.G. and Tzavaras A.E., (in preparation).

    Google Scholar 

  39. Lin P., Young measures and an application of compensated compactness to one-dimensional nonlinear elastodynamics. Trans. Amer. Math. Soc. 329 (1992), 377–413.

    Article  MathSciNet  MATH  Google Scholar 

  40. Lions P.L., Perthame B. and Tadmor E., A kinetic formulation of scalar multidimensional conservation laws, J. AMS 7 (1994), 169–191.

    MathSciNet  MATH  Google Scholar 

  41. Lions P.L., Perthame B. and Tadmor E., Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Physics 163 (1994), 415–431.

    Article  MathSciNet  MATH  Google Scholar 

  42. Lions P.L., Perthame B. and Souganidis P.E., Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 49 (1996), 599–638.

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu T.-P., The Riemann problem for general 2 x 2 conservation laws, Trans. Amer. Math. Society 199 (1974), 89–112.

    MATH  Google Scholar 

  44. Liu T.-P., The Riemann problem for general systems of conservation laws, J. Diff. Equations 18 (1975), 218–234.

    Article  MATH  Google Scholar 

  45. Liu T.-P., Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108 (1987), 153–175.

    Article  MathSciNet  MATH  Google Scholar 

  46. Majda A. and Pego R.L., Stable viscosity matrices for systems of conservation laws, J. Diff. Equations 56 (1985), 229–262.

    Article  MathSciNet  MATH  Google Scholar 

  47. Murat F., Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978), 489–507.

    MathSciNet  MATH  Google Scholar 

  48. Murat F., L’injection du cone positif de H -1 dans W-1,q est compacte pour tout q<2. J. Math. Pures Appl. 60 (1981), 309–322.

    Google Scholar 

  49. Natalini R., Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math. 49 (1996), 795–823.

    Article  MathSciNet  MATH  Google Scholar 

  50. Natalini R., A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws, J. Diff. Equations (to appear).

    Google Scholar 

  51. Perthame B. and Tadmor E., A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys. 136 (1991), 501–517.

    Article  MathSciNet  MATH  Google Scholar 

  52. Perthame B. and Tzavaras A.E., (in preparation).

    Google Scholar 

  53. Serre D., La compacitè par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d’ espace. J. Maths. Pures et Appl. 65 (1986), 423–468.

    MATH  Google Scholar 

  54. Serre D. and Shearer J., Convergence with physical viscosity for nonlinear elasticity, (1993) (preprint).

    Google Scholar 

  55. Shearer, M. and Schaeffer, D.G., Fully nonlinear hyperbolic systems of partial differential equations related to plasticity. Comm. Partial Differential Equations 20 (1995), 1133–1153.

    Article  MathSciNet  MATH  Google Scholar 

  56. Shearer J.W., Global existence and compactness in L p for the quasi-linear wave equation. Comm. Partial Differential Equations 19 (1994), 1829–1877.

    MathSciNet  MATH  Google Scholar 

  57. Slemrod M., A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase, Arch. Rational Mech. Analysis 105 (1989), 327–365.

    Article  MathSciNet  MATH  Google Scholar 

  58. Slemrod M., A comparison of two viscous regularizations of the Riemann problem for Burgers’s equation, SIAM J. Math. Analysis 26 (1995), 1415–1424.

    Article  MathSciNet  MATH  Google Scholar 

  59. Slemrod M. and Tzavaras A.E., A limiting viscosity approach for the Riemann problem in isentropic gas dynamics, Indiana Univ. Math. J. 38 (1989), 1047–1074.

    Article  MathSciNet  MATH  Google Scholar 

  60. Slemrod M. and Tzavaras A.E., Self-similar fluid-dynamic limits for the Broad-well system, Arch. Rational Mech. Anal. 122 (1993), 353–392.

    Article  MathSciNet  MATH  Google Scholar 

  61. Suliciu I., On the thermodynamics of rate-type fluids and phase transitions. I-Rate-type fluids and II-Phase transitions, (1997) (preprint).

    Google Scholar 

  62. Tan D., Zhang T. and Zheng Y., Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws. J. Differential Equations 112 (1994), 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  63. Tartar L., Compensated compactness and applications to partial differential equations, In Nonlinear Analysis and Mechanics, Heriot Watt Symposium, Vol. IV,R.J. Knops, ed., Pitman Research Notes in Math., New York, 1979, pp. 136192.

    Google Scholar 

  64. Truesdell C.A. and Noll W., The Nonlinear Field Theories of Mechanics, Handbuch der Physik III/3, Springer-Verlag, Berlin, 1965.

    Google Scholar 

  65. Tveito A. and Winther R., On the rate of convergence to equilibrium for a system of conservation laws with a relaxation term, SIAM J. Math. Anal. 28 (1997), 136–161.

    Article  MathSciNet  MATH  Google Scholar 

  66. Tzavaras A.E., Wave structure induced by fluid dynamic limits in the Broadwell model, Arch. Rational Mech. Anal. 127 (1994), 361–387.

    Article  MathSciNet  MATH  Google Scholar 

  67. Tzavaras A.E., Elastic as limit of viscoelastic response, in a context of self-similar viscous limits, J. Dif. Equations, 123 (1995), 305–341.

    Article  MathSciNet  MATH  Google Scholar 

  68. Tzavaras A.E., Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws, Arch. Rational Mech. Anal. 135 (1996), 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  69. Tzavaras A.E., Materials with internal variables and relaxation to conservation laws, Arch. Rational Mech. Anal. (to appear).

    Google Scholar 

  70. Tupciev V.A., On the method of introducing viscosity in the study of problems involving the decay of a discontinuity, Dokl. Akad. Nauk SSSR 211 (1973), 55–58. English translation: Soviet Math. Dokl. 14 (1973), 978–982.

    Google Scholar 

  71. Volpert A.I., The space BV and quasilinear equations Math. Sbornik 73(115) (2) (1967), 225–267.

    Google Scholar 

  72. Yong W.A., Singular perturbations of first-order hyperbolic systems, in “Nonlinear Hyperbolic Problems: Theoretical, Applied and Computational Aspects”, Notes on Numerical Fluid Mechanics, Vol. 43, Vieweg, Braunschweig 1993; also Ph.D. Thesis, Univ. of heidelberg, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tzavaras, A.E. (1999). Viscosity and Relaxation Approximation for Hyperbolic Systems of Conservation Laws. In: Kröner, D., Ohlberger, M., Rohde, C. (eds) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computational Science and Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58535-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58535-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65081-2

  • Online ISBN: 978-3-642-58535-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics