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Abstract. In this paper we present different approaches to structur-
ing covariance matrices within statistical classifiers. This is motivated
by the fact that the use of full covariance matrices is infeasible in many
applications. On the one hand, this is due to the high number of model
parameters that have to be estimated, on the other hand the compu-
tational complexity of a classifier based on full covariance matrices is
very high. We propose the use of diagonal and band-matrices to replace
full covariance matrices and we also show that computation of tangent
distance is equivalent to using a structured covariance matrix within a
statistical classifier.

1 Introduction

In the last few years, the use of Bayesian classifiers based on Gaussian mixture
densities or kernel densities proved to be very efficient for many pattern recog-
nition tasks, among them speech recognition, machine translation and object
recognition in images [1, 2, 3, 7]. One drawback of this approach is the fact that
the number of model parameters for such a classifier is extremely high, requiring
a very large amount of training data (which is not always available) for reliable
parameter estimation. A common approach to overcome this difficulty is the use
of diagonal instead of full covariance matrices, i.e. the use of variance vectors. In
this paper we investigate other possibilities to structure covariance matrices (the
variance vector being a very simple structuring approach). On the one hand, we
will do so by assuming that the grayvalue of a certain pixel only depends on
the grayvalues of the neighbouring pixels. We will also show that computation
of SIMARD’s tangent distance [14] can be interpreted as a special structure of
covariance matrices within a statistical classifier.

In the next Section, we will briefly describe the US Postal Service database
(USPS) which we used to carry out our experiments. Before discussing possible
approaches to structuring covariance matrices in Section 4, we will describe
the statistical classifier used in our experiments in Section 3. After presenting
experimental results in Section 5 (as well as a comparison of our results with
those reported by other international research groups), we will conclude the
paper in Section 6.
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Fig. 1. Example images taken from the USPS database

2 The US Postal Service Database

The USPS database (ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/) is a
well known handwritten digit recognition database. It contains 7291 training
objects and 2007 test objects. The digits are isolated and represented by a 16 x 16
pixels sized grayscale image (see Figure 1). Making use of appearance based
pattern recognition in our experiments, we interpret each pixel as a feature,
obtaining a 256-dimensional feature vector. The USPS recognition task is known
to be very hard, with a human error rate of about 2.5% on the testing data
[14]. An advantage of the USPS task is the availability of many recognition
results reported by international research groups, allowing for a fair comparison
of results.

3 The Statistical Classifier

To classify an observation z € IR” we use the Bayesian decision rule [6, pp.
10-39]

z—r(z) = argmax {p(k)p(z|k)} (1)

where p(k) is the prior probability of class k, p(z|k) is the class conditional
probability for the observation z given class k and r(z) is the decision of the
classifier. As neither p(k) nor p(z|k) are known, we have to choose models for the
respective distributions and estimate their parameters using the training data.

3.1 Gaussian Mixture Densities

In our experiments, we set p(k) = % for each class k (as it is not obvious why
a certain digit should have a higher prior probability than another) and model
p(z|k) by using Gaussian mixture densities or kernel densities respectively. A
Gaussian mixture is defined as a linear combination of Gaussian component
densities N (x|ugi, Zi), leading to the following expression for the class condi-
tional probabilities:

Iy
p(z|k) = chi N (x| ki, Zri) (2)



where I is the number of component densities used to model class k, c; are
weight coefficients (with ¢x; > 0 and Zfil cr; = 1, which is necessary to ensure
that p(z|k) is a probability density function), ug; is the mean vector and Xy; is
the covariance matrix of component density 4 of class k.

Maximum-likelihood parameter estimation can now be done using the Ex-
pectation-Maximization algorithm [4] in combination with a Linde-Buzo-Gray
based clustering procedure [10]. More information on that topic (for diagonal
covariance matrices) can be found in [2] or [1] respectively.

3.2 Kernel Densities

In the case of kernel densities (also called parzen windows or parzen densi-
ties) [5, pp. 147-153], each training sample z,, defines a Gaussian single density
N (2|2, Xy, ) with an estimated covariance matrix X, that is the sample itself
is interpreted as mean vector. Thus, kernel densities might be interpreted as an
extreme case of a mixture density model.

To classify an observation x, we now use the decision function

xr—r(z) = argznax {pxp(z|k)}, where (3)
1 &
pren(elk) = - > Nlalon, 5,) (4)

and Ny is the number of training samples belonging to class k.

A typical problem for statistical classifiers based on the models described
above is the estimation of covariance matrices. In case of the USPS task, with
feature vectors z € ]R%S, a single covariance matrix requires (due to symmetries)
the estimation of 256-(256+1)/2 = 32.896 parameters. Given only 7.291 training
samples, this is infeasible. A common approach to overcome this difficulty is the
use of variance pooling

— class specific variance pooling :

estimate only a single X}, for each class &k, i.e. Xy, =X, Vi=1,.. 1
— global variance pooling :

estimate only a single ¥, ie. Y, =X VEk=1,...,. KandVi=1,..., I}

in combination with diagonal covariance matrices, i.e. variance vectors. In our
kernel density experiments, we made use of class specific variance pooling, that
is we computed the empirical covariance matrix Xj for each class k and set
Xy, = Xy for each observation z, of class k. In contrast to this, our mixture
density based experiments were conducted using globally pooled variances, as
this proved to be the best choice.

Note that the use of a diagonal covariance matrix can be interpreted as a
very simple approach to structuring covariance matrices, where a rather harsh
approximation of a full covariance matrix is used in order to reduce the number
of free model parameters. In the following Section, we will present alternative,
more sophisticated approaches to this problem.



Fig. 2. Neigbourhoods N; (1), N2 (1,2) used (left). Resulting band struc-
ture of the inverse covariance matrix ¥~ ! for N; and 4 x 4 pixels sized
images (right). Black pixels represent non-zero entries in X1,

4 Structuring Covariance Matrices

In this section we will present two approaches to estimating structured covariance
matrices for image object recognition. The first is based on pixel neighbourhoods
and their influence on the covariance matrix X, the second is derived from a
probabilistic interpretation of tangent distance.

4.1 Structures based on Pixel Neighbourhoods

Using full covariance matrices for object recognition implies the possibility that
any two pixels within an image are correlated. On the other hand, using diagonal
covariance matrices, we assume that there is no correlation between different
pixels at all. Both such approaches are somewhat extreme: the first suffers from
a large amount of parameters, whereas the latter may be an unrealistic model in
some applications. As a compromise, one could use a full covariance matrix with
the restriction that the grayvalue of a given pixel only depends on the grayvalues
of its neighbours. Thus, the number of non-zero entries in the respective inverse
covariance matrix can be significantly reduced.

Regarding the neighbourhoods N; and N» as shown in Figure 2 and assuming
that the grayvalue of a pixel z;; only depends on its neighbouring pixels, the
respective inverse covariance matrix X ~! has a band structure (this can be shown
using Markov random field theory [9]), with the number of bands increasing as
the regarded neighbourhood grows (four bands for Ny, eight for Ny). Thus, any
entry of X! that does not lie on the diagonal or the bands is zero. Note that
some entries on the first band are zero, too (cp. Figure 2). This is due to the fact
that wrap-around is not considered, e.g. a pixel at the left border of an image is
not a neighbour of the corresponding pixel at the right border.

Considering this, a maximum-likelihood estimation of X (i.e. maximiza-
tion of Hgil p(znk|k) with respect to Xy, given the training observations py,
n =1,..., Ny) yields the interesting result, that we can only give estimations for
those entries in X} that lie on the diagonal or the bands. Thus, we know each
entry in Y that we do not know in Ek_l (where we have knowledge about the
occurences of zeros) and vice versa. Hence, an estimation for 2t (under the
constraint that only neighbouring pixel depend on each other) can be found by
solving the bilinear equation system



A (5)

where I is the matrix of identity. With £, Xt € RP*P this yields D? equa-
tions with D? unknowns. In our experiments, the solution of this equation system
is obtained by applying the Gauss-Seidel algorithm [11, pp. 864-869].

4.2 A Structure based on Tangent Distance

In 1993, SIMARD et al. proposed an invariant distance measure called tangent
distance, which proved to be especially effective for optical character recognition
[14]. The authors observed that reasonably small transformations of certain ob-
jects (like digits) do not affect class-membership. Simple distance measures like
the Euclidean distance do not account for this, instead they are very sensitive
to transformations like scaling, translation, rotation or axis deformations. When
an image z of size I x J is transformed (e.g. scaled and rotated) with a transfor-
mation ¢(z,«) which depends on L parameters o € R” (e.g. the scaling factor
and the rotation angle), the set of all transformed images

M, = {t(z,a) : a € R*} c R/ (6)

is a manifold of at most L dimensions. The distance between two images can now
be defined as the minimum distance between their according manifolds, being
truly invariant with respect to the L transformations regarded. Unfortunately,
computation of this distance is a hard optimization problem and the manifolds
needed have no analytic expression in general. Therefore, small transformations
of an image = are approximated by a tangent subspace M, to the manifold M,
at the point x. Those transformations can be obtained by adding to x a linear
combination of the vectors Tj(z),l = 1,...,L that span the tangent subspace.
Thus, we obtain as a first-order approximation of M,:

L
M, ={z+Y o Ti(z) :a e R"} c R/ (7)
=1

Now, the single sided tangent distance Dy (z,u) between an image z and a
reference image 4 is defined as

L
Dr(z,p) = min{|lz + o - Ti(x) — ull*} (8)
=1

The tangent vectors Tj(x) can be computed using finite differences between the
original image x and a small transformation of z [14]. A double sided TD can
also be defined by approximating M, and M, and minimizing the distance over
all possible combinations of the respective parameters. In our experiments, we
computed the seven tangent vectors for translations (2), rotation, scaling, axis
deformations (2) and line thickness, as proposed by Simard. Assuming that the



Table 1. Error rates on USPS for varying image sizes and structures of X.

[Tmage Size[Structure |[Error Rate [%]]
Diagonal 5.7

Band using Ny 5.5

8 x 8 Band using N» 5.1
full 4.6

tangent structure 4.6

16 x 16 diagonal + tangent, GMD 2.7
diagonal + tangent, KD 2.2

tangent vectors are orthogonal (which can be achieved using a singular value
decomposition), Eq. (8) can be solved efficiently by computing

L toT(2)]?
Dr(z,p) = llz — pl? = > (= _||5’,)(x)r‘|,|}2( )] o)

=1

Conceptionally, tangent variations of the references can be incorporated into
a statistical classifier by modeling Gaussian normal distributions via
N(z|p + ZZL:1 a; - Ti(p), X) with unknown ay. If we further assume a Gaussian
distribution for the parameter set a with zero mean and variance approaching
infinity, one can show that this probability can be computed using the following
structured covariance matrix:

. () Ti(p)

where Y is the empirical covariance matrix of the data. With k approaching
infinity, variances along the directions in feature space defined by the tangent
vectors approach infinity, too. Thus, variations of the reference images along
these directions are not considered. Note that the matrix ¥ cannot be used
explicitly (as it does not exist for kK — 00), yet calculating single-sided tangent
distance is equivalent to using Y. As the required calculations to prove this
statement are rather lengthy, they are omitted here. A detailed discussion of
this topic can be found in [8].

5 Results

We started our experiments by applying the kernel density based classifier to the
USPS task. As the solution of the bilinear equation system (5) is very time con-
suming, the USPS images were scaled down to a size of 8 x 8 pixels. Experiments
were done using the following structures for the (class specifically pooled) co-
variance matrices: (a) diagonal, (b) band structure using N; or N, respectively,
(c) structure via tangent distance as shown in Eq. (10) and (d) full covariance
matrix. The results obtained are shown in Table 1. As one would have expected,
estimation of a band structured covariance matrix reduces the error rate as com-
pared to a diagonal structure. Best results are obtained using a full covariance



Table 2. Results reported on USPS

[Author [Method [Error [%]|
|Simard et al., 1993 |Human Performance | 2.5|
Vapnik, 1995 Decision Tree C4.5 16.2
Vapnik, 1995 Two-Layer Neural Net 5.9
Simard et al., 1998 |Five-Layer Neural Net 4.2
Scholkopf, 1997 Support Vectors 4.0
Scholkopf et al., 1998|Invariant Support Vectors 3.0
Simard et al., 1993 |Tangent Distance *2.6
This work: Gaussian Mixtures + tangents 2.7

Kernel Densities + tangents 2.2

*: 2400 machine printed digits were added to the training set

matrix, which is not surprising, since we only estimated a single covariance ma-
trix per class, using downscaled USPS images. Interestingly, using the tangent
distance based structure yields the same results as compared to a full covariance
matrix, but - at the same time - reduces the computational complexity signifi-
cantly. Using the original 16 x 16 pixels sized USPS data, the tangent structure
(3.3%) significantly outperforms a full covariance matrix (6.3%, as the number
of free parameters increases by a factor of 16).

We therefore embedded tangent distance into a Gaussian mixture density
based classifier, based on diagonal, globally pooled covariance matrices. On the
original 16 x 16 pixels sized USPS images, this yields an excellent error rate of
2.7% using double-sided tangent distance. Using a bagged kernel density based
classifier, this error rate could be further reduced to 2.2%. These experiments
were conducted on virtually augmented USPS data, where each image was shifted
into the directions of the Ny-neighbourhood, yielding 9 - 7291 = 65619 training
samples (using other transformations to create virtual data did not improve the
error rate any further). A similar approach was used on the testing data, where
the final decision for the original test sample was achieved by using the sum
rule. Detailed information on the use of virtual data within statistical classifiers
and its impact on the classification error rate can be found in [1, 7]. Note that
using virtual data in combination with tangent distance is useful, as the shifted
images lead to a better approximation of the true manifolds (tangent distance
only approximates image shifts). A comparison of our results with that reported
by other groups can be found in Table 2, proving them to be state-of the art.

6 Conclusions

In this paper we presented a novel approach to using structured covariance ma-
trices for image object recognition within a statistical classifier. The structures
we proposed are based on a neighbourhood concept (only neighbouring pixels
depend on each other) and on a probabilistic interpretation of Simard’s tangent
distance. Using such structures, the number of model parameters that have to
be estimated can be considerably reduced. The advantage of this reduction is



twofold: On the one hand, parameter estimation is more reliable, on the other
hand the computational complexity of the classifier is reduced. We obtained
excellent results on the US Postal Service handwritten digit recognition task,
especially when using tangent distance to structure the respective covariance
matrices (2.2% error rate using a kernel density based classifier and virtual data).
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