
Structured Covariance Matrices for StatisticalImage Object RecognitionJ. Dahmen, D. Keysers, M. Pitz, H. NeyLehrstuhl f�ur Informatik VI, Computer Science DepartmentRWTH Aachen - University of TechnologyD-52056 Aachen, Germanyfdahmen, keysers, pitz, neyg@informatik.rwth-aachen.deAbstract. In this paper we present di�erent approaches to structur-ing covariance matrices within statistical classi�ers. This is motivatedby the fact that the use of full covariance matrices is infeasible in manyapplications. On the one hand, this is due to the high number of modelparameters that have to be estimated, on the other hand the compu-tational complexity of a classi�er based on full covariance matrices isvery high. We propose the use of diagonal and band-matrices to replacefull covariance matrices and we also show that computation of tangentdistance is equivalent to using a structured covariance matrix within astatistical classi�er.1 IntroductionIn the last few years, the use of Bayesian classi�ers based on Gaussian mixturedensities or kernel densities proved to be very e�cient for many pattern recog-nition tasks, among them speech recognition, machine translation and objectrecognition in images [1, 2, 3, 7]. One drawback of this approach is the fact thatthe number of model parameters for such a classi�er is extremely high, requiringa very large amount of training data (which is not always available) for reliableparameter estimation. A common approach to overcome this di�culty is the useof diagonal instead of full covariance matrices, i.e. the use of variance vectors. Inthis paper we investigate other possibilities to structure covariance matrices (thevariance vector being a very simple structuring approach). On the one hand, wewill do so by assuming that the grayvalue of a certain pixel only depends onthe grayvalues of the neighbouring pixels. We will also show that computationof Simard's tangent distance [14] can be interpreted as a special structure ofcovariance matrices within a statistical classi�er.In the next Section, we will brie
y describe the US Postal Service database(USPS) which we used to carry out our experiments. Before discussing possibleapproaches to structuring covariance matrices in Section 4, we will describethe statistical classi�er used in our experiments in Section 3. After presentingexperimental results in Section 5 (as well as a comparison of our results withthose reported by other international research groups), we will conclude thepaper in Section 6.



Fig. 1. Example images taken from the USPS database2 The US Postal Service DatabaseThe USPS database (ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/) is awell known handwritten digit recognition database. It contains 7291 trainingobjects and 2007 test objects. The digits are isolated and represented by a 16�16pixels sized grayscale image (see Figure 1). Making use of appearance basedpattern recognition in our experiments, we interpret each pixel as a feature,obtaining a 256-dimensional feature vector. The USPS recognition task is knownto be very hard, with a human error rate of about 2.5% on the testing data[14]. An advantage of the USPS task is the availability of many recognitionresults reported by international research groups, allowing for a fair comparisonof results.3 The Statistical Classi�erTo classify an observation x 2 IRD we use the Bayesian decision rule [6, pp.10-39] x 7�! r(x) = argmaxk fp(k)p(xjk)g (1)where p(k) is the prior probability of class k, p(xjk) is the class conditionalprobability for the observation x given class k and r(x) is the decision of theclassi�er. As neither p(k) nor p(xjk) are known, we have to choose models for therespective distributions and estimate their parameters using the training data.3.1 Gaussian Mixture DensitiesIn our experiments, we set p(k) = 1K for each class k (as it is not obvious whya certain digit should have a higher prior probability than another) and modelp(xjk) by using Gaussian mixture densities or kernel densities respectively. AGaussian mixture is de�ned as a linear combination of Gaussian componentdensities N (xj�ki ; �ki), leading to the following expression for the class condi-tional probabilities: p(xjk) = IkXi=1 cki � N (xj�ki; �ki) (2)



where Ik is the number of component densities used to model class k, cki areweight coe�cients (with cki > 0 and PIki=1 cki = 1, which is necessary to ensurethat p(xjk) is a probability density function), �ki is the mean vector and �ki isthe covariance matrix of component density i of class k.Maximum-likelihood parameter estimation can now be done using the Ex-pectation-Maximization algorithm [4] in combination with a Linde-Buzo-Graybased clustering procedure [10]. More information on that topic (for diagonalcovariance matrices) can be found in [2] or [1] respectively.3.2 Kernel DensitiesIn the case of kernel densities (also called parzen windows or parzen densi-ties) [5, pp. 147-153], each training sample xn de�nes a Gaussian single densityN (xjxn; �xn) with an estimated covariance matrix �xn , that is the sample itselfis interpreted as mean vector. Thus, kernel densities might be interpreted as anextreme case of a mixture density model.To classify an observation x, we now use the decision functionx 7�! r(x) = argmaxk fpKD(xjk)g ; where (3)pKD(xjk) = 1Nk NkXn=1N (xjxn; �xn) (4)and Nk is the number of training samples belonging to class k.A typical problem for statistical classi�ers based on the models describedabove is the estimation of covariance matrices. In case of the USPS task, withfeature vectors x 2 IR256, a single covariance matrix requires (due to symmetries)the estimation of 256�(256+1)=2 = 32:896 parameters. Given only 7:291 trainingsamples, this is infeasible. A common approach to overcome this di�culty is theuse of variance pooling{ class speci�c variance pooling :estimate only a single �k for each class k, i.e. �ki = �k 8 i = 1; :::; Ik{ global variance pooling :estimate only a single �, i.e. �ki = � 8 k = 1; :::;K and 8 i = 1; :::; Ikin combination with diagonal covariance matrices, i.e. variance vectors. In ourkernel density experiments, we made use of class speci�c variance pooling, thatis we computed the empirical covariance matrix �k for each class k and set�xn := �k for each observation xn of class k. In contrast to this, our mixturedensity based experiments were conducted using globally pooled variances, asthis proved to be the best choice.Note that the use of a diagonal covariance matrix can be interpreted as avery simple approach to structuring covariance matrices, where a rather harshapproximation of a full covariance matrix is used in order to reduce the numberof free model parameters. In the following Section, we will present alternative,more sophisticated approaches to this problem.
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ijFig. 2. Neigbourhoods N1 (1); N2 (1; 2) used (left). Resulting band struc-ture of the inverse covariance matrix ��1 for N1 and 4 � 4 pixels sizedimages (right). Black pixels represent non-zero entries in ��1.4 Structuring Covariance MatricesIn this section we will present two approaches to estimating structured covariancematrices for image object recognition. The �rst is based on pixel neighbourhoodsand their in
uence on the covariance matrix �, the second is derived from aprobabilistic interpretation of tangent distance.4.1 Structures based on Pixel NeighbourhoodsUsing full covariance matrices for object recognition implies the possibility thatany two pixels within an image are correlated. On the other hand, using diagonalcovariance matrices, we assume that there is no correlation between di�erentpixels at all. Both such approaches are somewhat extreme: the �rst su�ers froma large amount of parameters, whereas the latter may be an unrealistic model insome applications. As a compromise, one could use a full covariance matrix withthe restriction that the grayvalue of a given pixel only depends on the grayvaluesof its neighbours. Thus, the number of non-zero entries in the respective inversecovariance matrix can be signi�cantly reduced.Regarding the neighbourhoodsN1 andN2 as shown in Figure 2 and assumingthat the grayvalue of a pixel xij only depends on its neighbouring pixels, therespective inverse covariance matrix��1 has a band structure (this can be shownusing Markov random �eld theory [9]), with the number of bands increasing asthe regarded neighbourhood grows (four bands for N1, eight for N2). Thus, anyentry of ��1 that does not lie on the diagonal or the bands is zero. Note thatsome entries on the �rst band are zero, too (cp. Figure 2). This is due to the factthat wrap-around is not considered, e.g. a pixel at the left border of an image isnot a neighbour of the corresponding pixel at the right border.Considering this, a maximum-likelihood estimation of �k (i.e. maximiza-tion of QNkn=1 p(xnkjk) with respect to �k, given the training observations xnk ;n = 1; :::; Nk) yields the interesting result, that we can only give estimations forthose entries in �k that lie on the diagonal or the bands. Thus, we know eachentry in �k that we do not know in �k�1 (where we have knowledge about theoccurences of zeros) and vice versa. Hence, an estimation for �k�1 (under theconstraint that only neighbouring pixel depend on each other) can be found bysolving the bilinear equation system



�k ��k�1 = I (5)where I is the matrix of identity. With �k; �k�1 2 IRD�D , this yields D2 equa-tions withD2 unknowns. In our experiments, the solution of this equation systemis obtained by applying the Gauss-Seidel algorithm [11, pp. 864-869].4.2 A Structure based on Tangent DistanceIn 1993, Simard et al. proposed an invariant distance measure called tangentdistance, which proved to be especially e�ective for optical character recognition[14]. The authors observed that reasonably small transformations of certain ob-jects (like digits) do not a�ect class-membership. Simple distance measures likethe Euclidean distance do not account for this, instead they are very sensitiveto transformations like scaling, translation, rotation or axis deformations. Whenan image x of size I�J is transformed (e.g. scaled and rotated) with a transfor-mation t(x; �) which depends on L parameters � 2 IRL (e.g. the scaling factorand the rotation angle), the set of all transformed imagesMx = ft(x; �) : � 2 IRLg � IRI�J (6)is a manifold of at most L dimensions. The distance between two images can nowbe de�ned as the minimum distance between their according manifolds, beingtruly invariant with respect to the L transformations regarded. Unfortunately,computation of this distance is a hard optimization problem and the manifoldsneeded have no analytic expression in general. Therefore, small transformationsof an image x are approximated by a tangent subspace M̂x to the manifold Mxat the point x. Those transformations can be obtained by adding to x a linearcombination of the vectors Tl(x); l = 1; :::; L that span the tangent subspace.Thus, we obtain as a �rst-order approximation of Mx:M̂x = fx+ LXl=1 �l � Tl(x) : � 2 IRLg � IRI�J (7)Now, the single sided tangent distance DT (x; �) between an image x and areference image � is de�ned asDT (x; �) = min� fkx+ LXl=1 �l � Tl(x)� �k2g (8)The tangent vectors Tl(x) can be computed using �nite di�erences between theoriginal image x and a small transformation of x [14]. A double sided TD canalso be de�ned by approximating Mx and M� and minimizing the distance overall possible combinations of the respective parameters. In our experiments, wecomputed the seven tangent vectors for translations (2), rotation, scaling, axisdeformations (2) and line thickness, as proposed by Simard. Assuming that the



Table 1. Error rates on USPS for varying image sizes and structures of �.Image Size Structure Error Rate [%]Diagonal 5.7Band using N1 5.58� 8 Band using N2 5.1full 4.6tangent structure 4.6diagonal + tangent, GMD 2.716 � 16 diagonal + tangent, KD 2.2tangent vectors are orthogonal (which can be achieved using a singular valuedecomposition), Eq. (8) can be solved e�ciently by computingDT (x; �) = kx� �k2 � LXl=1 [(x� �)t � Tl(x)]2kTl(x)k2 (9)Conceptionally, tangent variations of the references can be incorporated intoa statistical classi�er by modeling Gaussian normal distributions viaN (xj�+PLl=1 �l � Tl(�); �) with unknown �l. If we further assume a Gaussiandistribution for the parameter set � with zero mean and variance approachingin�nity, one can show that this probability can be computed using the followingstructured covariance matrix:�̂ := lim�!1 � + � LXl=1 Tl(�)Tl(�)tTl(�)t��1Tl(�)! (10)where � is the empirical covariance matrix of the data. With � approachingin�nity, variances along the directions in feature space de�ned by the tangentvectors approach in�nity, too. Thus, variations of the reference images alongthese directions are not considered. Note that the matrix �̂ cannot be usedexplicitly (as it does not exist for � ! 1), yet calculating single-sided tangentdistance is equivalent to using �̂. As the required calculations to prove thisstatement are rather lengthy, they are omitted here. A detailed discussion ofthis topic can be found in [8].5 ResultsWe started our experiments by applying the kernel density based classi�er to theUSPS task. As the solution of the bilinear equation system (5) is very time con-suming, the USPS images were scaled down to a size of 8�8 pixels. Experimentswere done using the following structures for the (class speci�cally pooled) co-variance matrices: (a) diagonal, (b) band structure using N1 or N2 respectively,(c) structure via tangent distance as shown in Eq. (10) and (d) full covariancematrix. The results obtained are shown in Table 1. As one would have expected,estimation of a band structured covariance matrix reduces the error rate as com-pared to a diagonal structure. Best results are obtained using a full covariance



Table 2. Results reported on USPSAuthor Method Error [%]Simard et al., 1993 Human Performance 2.5Vapnik, 1995 Decision Tree C4.5 16.2Vapnik, 1995 Two-Layer Neural Net 5.9Simard et al., 1998 Five-Layer Neural Net 4.2Sch�olkopf, 1997 Support Vectors 4.0Sch�olkopf et al., 1998 Invariant Support Vectors 3.0Simard et al., 1993 Tangent Distance �2.6This work: Gaussian Mixtures + tangents 2.7Kernel Densities + tangents 2.2�: 2400 machine printed digits were added to the training setmatrix, which is not surprising, since we only estimated a single covariance ma-trix per class, using downscaled USPS images. Interestingly, using the tangentdistance based structure yields the same results as compared to a full covariancematrix, but - at the same time - reduces the computational complexity signi�-cantly. Using the original 16� 16 pixels sized USPS data, the tangent structure(3.3%) signi�cantly outperforms a full covariance matrix (6.3%, as the numberof free parameters increases by a factor of 16).We therefore embedded tangent distance into a Gaussian mixture densitybased classi�er, based on diagonal, globally pooled covariance matrices. On theoriginal 16� 16 pixels sized USPS images, this yields an excellent error rate of2:7% using double-sided tangent distance. Using a bagged kernel density basedclassi�er, this error rate could be further reduced to 2:2%. These experimentswere conducted on virtually augmented USPS data, where each image was shiftedinto the directions of the N2-neighbourhood, yielding 9 � 7291 = 65619 trainingsamples (using other transformations to create virtual data did not improve theerror rate any further). A similar approach was used on the testing data, wherethe �nal decision for the original test sample was achieved by using the sumrule. Detailed information on the use of virtual data within statistical classi�ersand its impact on the classi�cation error rate can be found in [1, 7]. Note thatusing virtual data in combination with tangent distance is useful, as the shiftedimages lead to a better approximation of the true manifolds (tangent distanceonly approximates image shifts). A comparison of our results with that reportedby other groups can be found in Table 2, proving them to be state-of the art.6 ConclusionsIn this paper we presented a novel approach to using structured covariance ma-trices for image object recognition within a statistical classi�er. The structureswe proposed are based on a neighbourhood concept (only neighbouring pixelsdepend on each other) and on a probabilistic interpretation of Simard's tangentdistance. Using such structures, the number of model parameters that have tobe estimated can be considerably reduced. The advantage of this reduction is



twofold: On the one hand, parameter estimation is more reliable, on the otherhand the computational complexity of the classi�er is reduced. We obtainedexcellent results on the US Postal Service handwritten digit recognition task,especially when using tangent distance to structure the respective covariancematrices (2.2% error rate using a kernel density based classi�er and virtual data).References1. J. Dahmen, D. Keysers, M. G�uld, H. Ney, \Invariant Image Object Recognition us-ing Gaussian Mixture Densities", Proceedings of the 15th International Conferenceon Pattern Recognition, Barcelona, Spain, September 2000, in press.2. J. Dahmen, K. Beulen, M. G�uld, H. Ney, "A Mixture Density Based Approachto Object Recognition for Image Retrieval", Proceedings of the 6th InternationalRIAOConference on Content-Based Multimedia Information Access, Paris, France,April 2000, in press.3. J. Dahmen, R. Schl�uter, H. Ney, "Discriminative Training of Gaussian Mixturesfor Image Object Recognition", in W. F�orstner, J. Buhmann, A. Faber, P. Faber(eds.): Proceedings of the 21. Symposium of the German Association for PatternRecognition (DAGM), Bonn, Germany, pp. 205-212, September 1999.4. A.P. Dempster, N.M. Laird, D.B. Rubin, \Maximum Likelihood from IncompleteData via the EM Algorithm," Journal of the Royal Statistical Society, 39(B),pp. 1-38, 1977.5. L. Devroye, L. Gy�or�, G. Lugosi, A Probabilistic Theory of Pattern Recognition,Springer, New York, 1996.6. R. O. Duda, P. E. Hart, Pattern Classi�cation and Scene Analysis, John Wiley &Sons, 1973.7. D. Keysers, J. Dahmen, T. Theiner, H. Ney, "Experiments with an ExtendedTangent Distance", Proceedings of the 15th International Conference on PatternRecognition, Barcelona, Spain, September 2000, in press.8. D. Keysers, J. Dahmen, H. Ney, \A Probabilistic View on Tangent Distance", Pro-ceedings of the 22. Symposium of the German Association for Pattern Recognition(DAGM), Kiel, Germany, September 2000, this volume.9. S. Z. Li, Markow Random Field Modelling in Computer Vision, Springer, Tokyo,Japan, 1995.10. Y. Linde, A. Buzo und R. M. Gray, \An Algorithm for Vector Quantizer Design,"IEEE Transactions on Communications, Vol. 28, No. 1, pp. 84-95, 1980.11. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipesin C, University Press, Cambridge, 1992.12. B. Sch�olkopf, Support Vector Learning, Oldenbourg Verlag, Munich, 1997.13. B. Sch�olkopf, P. Simard, A. Smola, V. Vapnik, \Prior Knowledge in Support VectorKernels," M. Jordan, M. Kearns, S. Solla (eds.): Advances in Neural InformationProcessing Systems 10, MIT Press, pp. 640-646, 1998.14. P. Simard, Y. Le Cun, J. Denker, \E�cient Pattern Recognition Using a NewTransformation Distance," S.J. Hanson, J.D. Cowan, C.L. Giles (eds.): Advancesin Neural Information Processing Systems 5, Morgan Kaufmann, San Mateo CA,pp. 50-58, 1993.15. V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York,pp.142-143, 1995.This article was processed using the LATEX macro package with LLNCS style


