
A Probabilisti View on Tangent DistaneD. Keysers, J. Dahmen, H. NeyLehrstuhl f�ur Informatik VI, Computer Siene DepartmentRWTH Aahen - University of TehnologyD-52056 Aahen, Germanyfkeysers, dahmen, neyg�informatik.rwth-aahen.deAbstrat. In this paper we present a new probabilisti interpretationof tangent distane, whih proved to be very e�etive in modeling im-age transformations in objet reognition. Desriptions of the resultingdistributions in pattern spae are given for di�erent possible models ofvariation, leading to a natural derivation of tangent distane. Further-more, a possible generalization is presented and experimental results onthe well known US Postal Servie database are presented.1 IntrodutionInvariane of lassi�ation algorithms with respet to ertain transformationsplays an important role in pattern reognition. For example, in reognition ofimage objets like handwritten digits, invariane with respet to (small) aÆnevariations is desired. One method whih an ahieve suh invariane by using�rst order approximation of the manifolds generated by the onsidered transfor-mations is known as tangent distane (TD). It was introdued by Simard et al.[14, 13℄ and suessfully used for pattern reognition. TD and related approahesare usually seen in the ontext of distane based lassi�ers, but an as well beused in parametri lassi�ers [1℄. For those ases, a theoretial model may behelpful, where the fous on distanes an be related to the fous on distributionsusing the negative logarithm:� log p(xj�) = � log 1norm exp��12d(x; �)� = 12d(x; �) + onstThis paper presents a novel desription of the relation between a distributionrespeting pattern variation and TD. In [10℄, a probabilisti view on subspaemethods is onsidered, but it is only derived that the distribution of distanesfrom the subspae has the form of a gamma distribution.The following Setion gives an overview of TD, whereas Setion 3 deals withvariations of the referenes � respetively of the observations x and distinguishesbetween known derivatives of variation and ases where this information is notavailable. After a view on a ombination of the desribed approahes, Setion 5gives some results and the last Setion onludes the paper.Fig. 1. Examples for tangent approximation (aÆne transformations and line thikness)



2 Overview of tangent distaneIn 1993 Simard et al. proposed an invariant distane measure alled tangentdistane, whih proved to be espeially e�etive in the domain of digit reogni-tion [14℄. The authors observed that reasonably small transformations of ertainimage objets do not a�et lass-membership. When an image x 2 IRD (seenas a one-dimensional vetor here) is transformed (e.g. saled and rotated) by atransformation t(x; �) whih depends on L parameters � 2 IRL (e.g. the salingfator and rotation angle), the set of all transformed patternsMx = ft(x; �) : � 2 IRLg � IRDis a manifold of at most dimension L in pattern spae. The distane between twopatterns an now be de�ned as the minimum distane between their respetivemanifolds, being truly invariant with respet to the L regarded transformations.As omputation of this distane is a hard non-linear optimization problem andthe manifolds onerned do not have an analyti expression in general, smalltransformations of the pattern x are approximated by a tangent subspae to themanifold Mx at the point x. This subspae is obtained by adding to x a linearombination of the vetors xl; l = 1; : : : ; L alled tangent vetors that span thetangent subspae. The tangent vetors are the partial derivatives of t(x; �) withrespet to �l (therefore `derivative' and `diretion' of variation are regarded assynonymous here). We obtain a �rst-order approximation of Mx, whih is thesubspae ontaining all x� = x+Pl �lxl for � 2 IRL. The (squared) single-sidedTD with tangents in x is then de�ned asd(x; �) = min� nkx+Xl �lxl � �k2oThe tangent vetors xl an be omputed using �nite di�erenes between theoriginal image x and a reasonably small transformation of x [14℄. Example imagesthat were omputed using tangent approximation are shown in Fig. 1 (with theoriginal image on the left). Similarly, we an de�ne TD using an approximationof the manifold generated by � and a double-sided TD, where both manifoldsare approximated and the distane is minimized over possible ombinations ofthe respetive parameters.3 Probabilisti interpretation of variationIn this Setion we will onsider the di�erent ases where eah referene vetor �or eah observation x may be subjet to variations.3.1 Known derivatives of variation in the refereneWe �rst assume presene of a-priori knowledge about these transformations,e.g. aÆne transformations for images, suh that the diretions of variation �lare known. Consider a Gaussian distribution of the referenes with ovarianematrix � and the �rst order approximation of the transformed referenep(xj�; �) = N (xj�+Xl �l�l; �)



= 1p(2�)D j�j exp��12 ��+Xl �l�l � x�T ��1 ��+Xl �l�l � x��Assuming independent Gaussian distribution for the �l, p(�j�) = N (�j0; 2I)(whih an be justi�ed by the entral limit theorem [10℄) yieldsp(xj�) = Z p(x; �j�) d� = Z p(�j�) p(xj�; �) d�� max� �N (�j0; 2I) N (xj��; �)	 (1)= max� ( 1p2�2L exp�� 122 Xl �2l� �1p(2�)D j�j exp��12 ��+Xl �l�l � x�T ��1 ��+Xl �l�l � x��) (2)The use of maximum approximation in (1) is not essential. The same results(exept for some onstant terms) an be obtained without its appliation, butthe alulations are somewhat more omplex [8℄. Expression (2) is maximizedwhen the (double) negative logarithm is minimized, whih an now be interpretedas the distane between x and �, thus deriving an invariant distane measure(onstant terms have been dropped).d(x; �) := �2 log p(xj�)� min� � 12 Xl �2l + ��+Xl �l�l � x�T ��1 ��+Xl �l�l � x��= min� � 12 Xl �2l + (�� x)T��1(�� x) + (�� x)T��1 �Xl �l�l�+�Xl �l�l�T ��1(�� x) + �Xl �l�l�T ��1 �Xl �l�l��Assuming orthogonality of the �l with respet to ��1, that is �Tl ��1�l0 = 0 forl 6= l0 (whih an be ahieved without altering the spanned subspae using anSVD), it follows that (Pl �l�l)T��1(Pl �l�l) = Pl �2l �Tl ��1�l. Furthermorethe third and fourth term of the above sum are idential and the seond term isindependent of �. Therefore the expression redues tod(x; �) � (�� x)T��1(�� x)+ min� �Xl �2l � 12 + �Tl ��1�l�+ 2(�� x)T��1 �Xl �l�l��= (�� x)T��1(�� x)�Xl ((�� x)T��1�l)212 + �Tl ��1�l+ min� 8<:Xl� 12 + �Tl ��1�l� �l + (�� x)T��1�l12 + �Tl ��1�l !29=; (3)= (�� x)T��1(�� x)�Xl ((�� x)T��1�l)212 + �Tl ��1�l



where the minimization in (3) is equal to zero sine it is a minimization of a sumof weighted squares. At the boundaries of the onsidered range for , [0;1) thisyields Mahalanobis distane for  ! 0 and TD with tangents �l for  !1. (Nogain ould be obtained by restriting the value of .) Using the relationxT (A�1 + bbT )x = xTA�1x+ xT bbTx = xTA�1x+ (bTx)2and assuming  !1 this an be rewritten asd(x; �) � (�� x)T ���1 �Xl (�Tl ��1)T (�Tl ��1)�Tl ��1�l � (�� x) (4)Eq. (4) an be regarded as assuming `in�nite' variane in the diretions of the�l, as the inverse of the entral matrix an be interpreted as ovariane matrix:���1 � �Xl (�Tl ��1)T (�Tl ��1)�Tl ��1�l ��� + �Xl �l�Tl�Tl ��1�l�= I � (�� �+ ��)Xl ��1�l�Tl�Tl ��1�lThe latter beomes the identity matrix I if � � � + �� = 0 or � = �1�� . Thus,as � approahes 1 as in TD (4), � goes to in�nity, so that we an write (beingaware of the fat that the inverse does not exist in IRD�D):p(xj�) = N (xj�;�0) with �0 = lim�!1�� + �Xl �l�Tl�Tl ��1�l�The resulting distribution an be onsidered as a degenerate ase of the normaldistribution or as a normal distribution in the redued vetor spae that resultsfrom the projetion along the diretions of the �l. Suh a model is generallyalled a linear model, whih brings about some normalization problems for thease where  ! 1. Hinton et al. state that suh a model \is not properlynormalizable", yet very useful, and refer to fator analysis as a resort [6℄. Thisproblem an be irumvented by regarding the distribution in the spae originat-ing from projetion along the subspae. Note that the presented onsiderationsan be interpreted as imposing a ertain struture on the ovariane matrix dueto tangent distane [2℄.3.2 Estimating derivatives of variation in the refereneIn some ases there is no a-priori information available about the diretions ofvariation of the data to be modeled, but it is known that there exists lassspei� variability in the data. In this ase one needs to estimate the derivativesof variation for eah lass to be able to use the methods desribed above.Given data x1; : : : ; xN , a referene � and a ovariane matrix �, we anapply a maximum likelihood approah to estimate the diretions �l, assumingknowledge of the number of dimensions L to be sought for. One an show thatmaximizing the likelihood Qn p(xnj�) is equivalent to the maximization of thefollowing expression with respet to the �l:Xl �Tl ��1S��1�l12 + �Tl ��1�l != max�1;:::;�l



with S =Pn(��xn)(�� xn)T . This is maximized when the vetors (�� 12 )T�lorrespond to the L eigenvetors with the largest eigenvalues of the matrix(�� 12 )TS�� 12 , its prinipal omponents. For example, assuming � = I thisimplies using the diretions of largest intra-lass variane of the data. In a moregeneral ase we might onsider using the global ovariane matrix for � andthe lass spei� ovariane matrix for S, whih is equivalent to performing aglobal whitening transformation as transformation of parameter spae and thenemploying the L prinipal omponents of the lass spei� empirial ovarianematrix as tangent vetors. This leads to an algorithm similar to that presentedin [4℄, respetively within a mixture density based lassi�er it leads to loal PCAlearning [11℄. Note that due to the distintion between global and lass spei�ovariane matrix the approah we present here is inherently disriminative.In nearest neighbor or kernel density lassi�ers we may be interested in aloal estimation of the derivatives of variation, that is for eah element xn ofthe training set. Then, one approah is to use the �rst L prinipal omponentsof the matrix Px02U(xn) �(jjx0 � xnjj) � (x0 � xn)(x0 � xn)T where U(xn) is theset ontaining the vetors losest to xn of the same lass and �(�) is a weightingfuntion depending on the distane of the two vetors. If �(�) is onstant thisyields the loal subspae lassi�er [10℄. Note that this method may not be usefulfor the estimation of variation in the observation during the reognition proess,beause then the diretions need to be alulated one for every lass that ishypothesized and furthermore in nearest neighbor based lassi�ers it leads tozero distane for all lasses, if used in the straightforward manner. Therefore thefollowing onsiderations deal with known variations in the observations.3.3 Known derivatives of variation in the observationduring reognitionSimilar to the ase of transformed referenes we an now onsider for a givenx all variations x� = x +Pl �lxl. Sine the only di�erene in the alulationsis the replaement of the term `+Pl �l�l' by `�Pl �lxl' in Setion 3.1, we anperform exatly the same alulations, substituting �l with �xl and obtain (asthe negation anels out in all plaes)d(x; �) = (�� x)T  ��1 �Xl (xTl ��1)T (xTl ��1)12 + xTl ��1xl ! (�� x) (5)Note that the resulting form of the distribution annot be expressed as a (de-generate) Gaussian here, as the matrix depends on the value of x.3.4 Known derivatives of variation in the observationduring trainingOne an also look at the a-priori knowledge about the data from another pointof view, namely during parameter estimation, e.g. when training a Gaussian(mixture) density for reognition. In that ase we might be interested in usingthe additional knowledge only during training for a more reliable estimation



of parameters. Consider a Gaussian distribution N (xj�;�) with parameters �and � to be estimated and training data x1; : : : ; xN 2 IRD. Furthermore, weassume that the tangents xn1; : : : ; xnL 2 IRD are given. We an now modifythe maximum likelihood estimates for the parameters by distributing the weightone of eah training vetor xn over \in�nitely many" variations xn� with weightp(�) = N (�j0; ��).One an show that this has no e�et on the new mean [8℄, i.e. �T = �. Yet,the new ovariane matrix does hange and assuming independene and equalvariane �2� for the omponents of � one obtains�T = Z 1N p(�)Xn(xn� � �)(xn� � �)T d� = � + �2�Xl 1N Xn xnlxTnl (6)If the resulting probabilisti models are interpreted as generative models forimages, the obtained results are similar to those of Hinton et al. [7℄, who inferthem from a variant of the neural net inspired tangent prop algorithm [13℄. Asimilar result has also been desribed in [3℄ and for support vetor mahines in[12℄, and it is presented in a wider framework here. The estimation of parametershanges in a fundamental way, if it is assumed that TD will also be used duringreognition. This has onsequenes for the referenes as well as the ovarianematrix [4℄.4 CombinationIt is possible to ombine the di�erent approahes mentioned, e.g. ombining (4)and (5) yields double-sided TD. This may be ombined with (6) givingd(x; �) = (�� x)T  ��1T � 2LXl=1 (uTl ��1T )T (uTl ��1T )uTl ��1T ul ! (�� x)With fu1; : : : u2Lg being a set of vetors spanning the same subspae as the setfx1; : : : xL; �1; : : : �Lg with the ondition uTl ��1T ul0 = 0 for l 6= l0. Sine the xland the �l play essentially the same role here, and this is in turn the same as forthe di�erenes x0 � xn from the Setion 3.2, we might onstrut an even moregeneral ase, in whih the �rst prinipal omponents of the matrixPx02U(xn) �1(jjx0 � xnjj)(x0 � xn)(x0 � xn)T+Pl �2xnlxTnl + �3�l�Tl + �4Pn0 xn0lxTn0lare used as tangent vetors for the alulation of the distane d(xn; �). Di�erentsettings of the oeÆients �1(�); �2; �3; �4 allow to reprodue eah speial aseonsidered before, thus arriving at a valid generalization.5 ResultsAll results presented here were obtained on the well known US Postal Serviehandwritten digits reognition task (USPS). It ontains normalized greysaleimages of size 16�16, divided into a training set of 7291 patterns and a test



Table 1. Summary of results for USPS�: obtained with a training set extended by 2,400 mahine-printed digitsMethod ER [%℄Human Performane [14, 13℄ 2.51-NN Classi�er 5.6This work: TD, 1-NN 3.3TD, KD, virtual data 2.2 Method ER [%℄Neural Net (LeNet1/4) [13℄ 4.2Support Vetors [12℄ 3.0Boosting [13℄ �2.6Tangent Distane [13℄ �2.5set of 2007 patterns. Reported results for this database are summarized in Ta-ble 1. Best results reported so far were obtained with an extended training setaugmented with about 2,400 mahine printed digits, using a nearest neighborlassi�er implementing TD and a boosted neural network. In our experimentswe were not able to obtain better results than 3.3% error rate with the originaltraining set employing a 1-NN lassi�er with TD (aÆne transformations andline thikness). Using a bagged kernel density based lassi�er and virtual train-ing and testing data (by shifting the images 1 pixel into 8 diretions, keepingtraining and test set nevertheless separated), where di�erent test results wereombined using the sum rule, we were able to redue the error rate further to2.2%, showing the e�etivity of the TD approah [9℄.We also experimented with lassi�ers using only a single referene per lass.Here, the estimation of tangent vetors in � yielded an error rate of 6.4% forL = 7 (whih ompares favorably to 11.8% for the tangents alulated usinga-priori knowledge and 18.6% for a NN without tangents) and 5.5% for L = 12.To obtain results for patterns for whih the derivatives of variation withineah lass are not known a-priori, we also arried out experiments with a re-dued feature spae. The patterns were transformed performing an LDA using40 lusters of the data, yielding 39 features [1℄. These features redue the errorrate without tangents from 18.6% to 12.5%. Using the estimated diretions ofvariation this result an be improved to 8.6%. The omputational omplexity ofthe algorithms was not the key issue in the experiments but it does not imposeproblems, as the lassi�ation of a single observation using TD requires aboutone seond of CPU time using all 7291 USPS training samples as referenes.6 ConlusionsIn this paper we presented a new probabilisti interpretation of tangent distane,deriving it from the assumption of intra-lass variane. We examined di�erentpossible settings and inferred the orresponding distane measures as well asa ombined representation. Tangent distane an be regarded as a struturingmethod for ovariane matries, assuming in�nite variane in the diretions ofvariation. Estimating the derivatives of variation amounts to loal PCA if theglobal ovariane matrix is white. The derived distane measures may be helpfulin the design of lassi�ation algorithms when the onsidered type of variation ispresent in the data. The experiments arried out support our theoretial results.Due to spae limitations, some alulations were abbreviated respetivelyomitted. An in-depth disussion an be found in [8℄. The onsiderations in this
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