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1 Introduction

Primary decomposition of an ideal in a polynomial ring over a field belongs to
the indispensable theoretical tools in commutative algebra and algebraic geom-
etry. Geometrically it corresponds to the decomposition of an affine variety into
irreducible components and is, therefore, also an important geometric concept.

The decomposition of a variety into irreducible components is, however,
slightly weaker than the full primary decomposition, since the irreducible com-
ponents correspond only to the minimal primes of the ideal of the variety, which
is a radical ideal. The embedded components, although invisible in the decom-
position of the variety itself, are, however, responsible for many geometric prop-
erties, in particular, if we deform the variety slightly. Therefore, they cannot be
neglected and the knowledge of the full primary decomposition is important also
in a geometric context.

In contrast to the theoretical importance, one can find in mathematical pa-
pers only very few concrete examples of non—trivial primary decompositions
because carrying out such a decomposition by hand is almost impossible. This
experience corresponds to the fact that providing efficient algorithms for primary
decomposition of an ideal I C K[x1,...,z,], K a field, is also a difficult task
and still one of the big challenges for computational algebra and computational
algebraic geometry.

All known algorithms require Grobner bases respectively characteristic sets
and multivariate polynomial factorization over some (algebraic or transcenden-
tal) extension of the given field K. The first practical algorithm for computing
the minimal associated primes is based on characteristic sets and the Ritt—Wu
process ([R1], [R2], [Wu], [W]), the first practical and general primary decom-
position algorithm was given by Gianni, Trager and Zacharias [GTZ]. New ideas
from homological algebra were introduced by Eisenbud, Huneke and Vasconcelos
in [EHV]. Recently, Shimoyama and Yokoyama [SY] provided a new algorithm,
using Grobner bases, to obtain the primary decompositon from the given mini-
mal associated primes.

In the present paper we present all four approaches together with some im-
provements and with detailed comparisons, based upon an analysis of 34 ex-
amples using the computer algebra system SINGULAR [GPS]. Since primary



decomposition is a fairly complicated task, it is, therefore, best explained by di-
viding it into several subtasks, in particular, while sometimes only one of these
subtasks is needed in practice. The paper is organized in such a way that we
consider the subtasks separately and present the different approaches of the
above-mentioned authors, with several tricks and improvements incorporated.
Some of these improvements and the combination of certain steps from the dif-
ferent algorithms are essential for improving the practical performance.

Section 2 contains the algorithms. After explaining some important splitting
tools, we explain two different approaches for computing the radical of I respec-
tively the radical of the equidimensional hull. In Subsection 2.2 we present two
algorithms for computing the equidimensional hull itself and a weak, that is, up
to radical, decomposition of the equidimensional hull.

The algorithms of [GTZ] and [EHV] both reduce the general problem to
primary decomposition of zero—dimensional ideals. We, therefore, consider the
0—dimensional case, together with some theoretical background, in Subsection
2.3.

In Subsection 2.4 we describe the three algorithms of [GTZ], [EHV] and
[SY] for the general case, together with an algorithm to compute the mini-
mal associated primes of I. The algorithm of [EHV] uses the normalization of
K[zq,...,2,]/I and we present a new algorithm ([J]), based on a criterion of
Grauert and Remmert, in Subsection 2.5. Another algorithm for computing the
minimal associated primes is based on characteristic sets and this is presented,
together with some basic facts about characteristic sets, in Subsection 2.6.

Section 3 is devoted to the examples and comparisons of the different ap-
proaches. The examples were taken from a still larger list and they demonstrate
our present knowledge about the relative performance. Our table on the last
page shows that a general best strategy does not exist. Generally speaking, the
characteristic set method has problems if the examples require too many factor-
izations over extension fields, while [GTZ] has problems if the examples require
going to general position by a random coordinate change. So far, we can only
recommend a combination of the different subalgorithms, depending on the ex-
ample. In contrast to the opinion of some authors, our experience is that one
should use factorization as often as possible, since usually the Grébner bases
computations are the hardest part. This is, in particular, true for the algorithm
computing the minimal primes, where we use the factorizing Grobner, but also
there are exceptions. We are aware of the fact that comparison of algorithms
by examples is certainly affected by the choice of the examples and by tricky
implementation features. On the other hand, the present paper appears to be
the first systematic comparison of the four, so far, most important algorithms
under equal conditions.

All algorithms presented in this paper are, or are about to be, implemented in
SINGULAR with options for the user to combine his own favourite subalgorithms
and are available in the library primdec.lib and distributed with the programme
(cf. [GPS]).



Throughout this paper, we assume that Grobner bases computations and
multivariate polynomial factorization are possible over all fields considered. All
Grdbner bases are minimal, if not mentioned otherwise. For some assertions and
algorithms, if char(K) = p, we need to assume p = 0 or p >> 0.

Acknowledgement: the authors were supported by the Deutsche Forschungs-
gemeinschaft through projects within the Schwerpunktprogramm.

2 The Algorithms

In this section, K is a field, R = K[z1,...,2,], and I C R is an ideal.

Our aim is to explain how to compute several decompositions of I, its radical
V1, and the normalization of the factor ring R/I. Our main tools are Grobner
bases, but, for a complete primary decomposition, we also need multivariate
polynomial factorization. All algorithms presented in this note are, or are about
to be, implemented in SINGULAR.

IfI = ,rTlei is a minimal primary decomposition (that is, r is minimal)

1=
with associated primes P; = /@Q;, then we write E,(I) := N Q; for
codim(Q;)=v
the equidimensional part of I of codimension v (if codim(Q;) # v for all i let
E,(I)=R).
We are interested in solving the following problems:

1. Compute the equidimensional hull E.(I), ¢ = codim([).

2. More generally, compute the equidimensional decomposition of I, that is, for
v > ¢ compute F,(I).

2’. To solve a weaker problem, compute equidimensional ideals I, such that
VI, = E,(I),v>c.

3. Compute Ass(I) = {P1,...,P;} and minAss(I) = {F; € Ass(I) | P; G Pj
for i # j}.

4. Compute the radical VT = rTW P = N P and the equidimensional
i=1 Pemin Ass([I)

radical “¥/T = \/E.(I), ¢ = codim(I).

5. Compute, for I radical, the normalization of R/I, that is the integral closure
of R/I in its quotient ring Q(R/I).

6. Compute a minimal primary decomposition of 1.

Splitting tools may allow the reduction of a given problem to a problem
involving ideals which are easier to handle.

Lemma 1 (splitting tools). Let I C R be an ideal.

IfI: f=1:f% for some f € R, then I = (I : f)N{I, f).

Iff-g€l, and (f,g) = R, then I =(I, f) N {I, g).

If f-g €I, then VI =+/(I,f)N/{I,g).

If fr € I, then VI = /I, f).

If J C R is an ideal, then VI =VI: INVTI+JT=VI:Jn/T:(I:1J).

AR NI



Remark 2. Our experience shows that in all algorithms one should use Lemma
1 to split the ideal as often as possible.

Remark 3. Polynomials f as in Lemma 1, 1. can be found via saturation: if
I:h® =T:hV then I = (I:hN)N{I,AN). If hy-...-h, is the squarefree part
of h, then we may replace hN by h¥ ... .hks where I: h% =T :hM . . . pks.
In fact, we may compute I : h* via ideal quotients by successively increasing
the powers of the h;.

This idea applies, in particular, in the following case.

Lemma 4. Let I C K[z], x = {21,...,2Zn}, be an ideal, and let u C = be a
subset of variables. Fiz a block—ordering < on K|x] with u << z \ u, that is,
with T, < xp whenever x, € u and xy € x~u. Let S be a Grébner basis of I with
respect to <. Then S is a (not necessarily minimal) Grobner basis of I K (u)[z~\u]
with respect to the order < restricted to x~u. Set h = lem{lc(g) | g € S}, where
le(g) € K[u] is taken of g as a polynomial in K (u)[z \ u]. Then

1. IK(u)[z ~u]N K[z] = (I : h™).
2. Assume that IK (u)[z~u] = /TK (u)[z ~ u]. Then /I = (I : h®)N\/(I, h).

An important application of extension and contraction as in Lemma, 4 reflects
the dimension of I. In fact, the following may be taken as a definition of dim(I):

dim(I) = max{#u | u C z,u is independent mod I}.

Recall that u is independent mod I if I N k[u] = {0}. In particular, I is zero—
dimensional if and only if I contains for each ¢ a non—constant polynomial in the
variable xz;. Let

Xr:={u C z | u is a maximal independent set mod I with #u = dim(I)}.

Then for u € X the extension IK (u)[z \ u] is zero—dimensional, and the con-
traction I' K (u)[z ~\ u] N K[z] is equidimensional of dimension dim([).

Instead of computing X7 it is much easier to compute the (possibly proper)
subset X := Xy, where < is a given admissible term-ordering on K[z], and
L(I) is the corresponding leading or initial ideal of I.

2.1 Radicals

We shall describe two different approaches to the computation of radicals. An-
other approach, which will not be treated here, is due to Becker and Wormann
((BW]).

We start with an algorithm, which, in its main part, is due to Krick and
Logar ([KL]).

Proposition 5. Let I C Kl[xz1,...,2,] be a zero—dimensional ideal. For i =
1,...,n let Fi(z;) € K[z;)N I be a polynomial of minimal degree, and let L;(z;)
be the square free part of F;. Then /T =1+ (Ly,...,Ly,).



The general case can be reduced to the zero—dimensional case via Lemma, 4.

Algorithm 1.

RADICAL(T)
Input: anideal I in K[z1,...,Zy)
Output:/T
— choose any admissible term-ordering < on K{z1,...,Zn];

— use the factorizing Grébner basis algorithm to split I;
the result m is a set of ideals given by Grébner bases such that

e all elements of the Grobner bases are irreducible;
o the radical of the intersection of the elements of m is the radical of I;

— for J € mdo

e compute X;;

e Result := (1), W := J;

e for u € X5 do

x compute a Grobner basis S of W with respect to a block—ordering
< with u << z N u;

* using linear algebra and the Grébner basis S, compute for all z; € z~
u a polynomial F;(z;) such that (F;(z;)) = WK (u)[z ~u]NK (u)[z;];

* compute the square free part L; of Fj;

x compute a Grobner basis T of WK (u)[z \ u] + ({L;|z; € = ~\ u})
such that the elements of T' are polynomials in K[z];

% compute the least common multiple h € K[u] of the leading coeffi-
cients of the elements in 7" as in Lemma 4;

* compute Result := Result N({T') : h*°) in K[x];

x W .= (W, h);

e (at this point Result equals the equidimensional radical of J if dim W <
dim J; this condition is not necessarily fulfilled since X; might be a
proper subset of Xj);

¢ Result := Result N RapicAL(W);

— return Result

A quite different approach is due to Eisenbud, Huneke, and Vasconcelos
([EHV]). We suppose that K is a field of characteristic 0, or of characteristic
p > 0, p sufficiently large.

Let A = K[z1,...,z,]/I be a K—algebra of finite type. We denote by J,(4)
the a-th fitting ideal of the module of Kéhler differentials 24k, and by J,(I)
the pull-back of J,(A) in Kz1,...,z,]. Recall that if I = (fi,..., fm), then
Jo(I) = I+ the ideal generated by the (n — a)-minors of the Jacobian matrix

(%). Note, that the formation of J,(A) commutes with localization and base
change.
The idea of the algorithm goes back to the following theorem of Scheja and

Storch ([SS]).



Theorem 6. Let A be a local Artinian K —algebra with mazimal ideal M 4. Then
A is a complete intersection if and only if (0) : Jo(A) = Ma4.

In our case A = K[x1,...,2,]/I; this result can be formulated as follows.
Let I C K[z1,...,2,) be an (z1,...,z,)-primary ideal. Then I is a complete
intersection if and only if I : Jo(I) = (z1,...,zy)-

Corollary 7. Let I C K[x1,...,2Z,] be a complete intersection of dimension d.
Then VT =1 : Jy(I).

Corollary 8. Let I C K|[z1,...,%,] be an equidimensional ideal of codimension
cand fi,...,f. € I a regular sequence. If Iy = {f1,.-., f.), then

\/TZ\/I_O:(\/I_O:I).

Remark 9. Write I = I NI, where I is the equidimensional part of I intersected
with the embedded components corresponding to the equidimensional part, and

where I, is the remaining part of higher codimension. Then I = T : \/EN,
where N has the property that I : VLY =1 vVt

We obtain the following algorithms:

Algorithm 2.

EQUIRADICAL(])
Input: anideal I in K[z1,...,z,]
Output: the radical of the equidimensional hull of T

— choose any admissible term-ordering < on K{z1,...,Zy];
— compute a Grobner basis of I and ¢ := codim([);
— choose a regular sequence f1,. .., f. in I (try the first ¢ elements of a minimal

set, of generators of I; if this does not work, choose ¢ elements as generic linear
combinations of the generators of I with coefficients in K);

— compute the Jacobian ideal Jy := J,_.(ly) of Iy := (f1,---, fe);

— compute /Iy = Iy : Jg;

— return /Io : (/To : I)

Algorithm 3.

RaDICAL(T)
Input: anideal I in K[z1,...,z,]
Output: the radical of T

— I := EQUIRADICAL(]);
— compute N such that I: IN =T : N+
— return I;N RADICAL(] : I}Y)

The main drawback of Algorithms 2 and 3 is the computation of regular
sequences via random linear combinations. A second approach of Eisenbud,
Huneke, and Vasconcelos ([EHV]) avoids the computation of regular sequences.
This is based on



Proposition 10. Let K be a perfect field, and let I C K|[z1,...,z,] be an ideal
of dimension d. If K has characteristic p > 0, suppose that the nil-radical of
Klzy,...,2,]/1 is generated by elements whose index of nil-potency is smaller
than p. If for some a > d

dim J, 1 (1) < d |

then I := I : J,(I) has the same equidimensional radical as I. If a = d then I; is
radical in dimension d, that is, the primary components of Iy having dimension
d are prime.

The proof of Proposition 10 relies on the following

Theorem 11. Let K be a perfect field, A = K[x1,...,2,]/] and P D I a prime
ideal. Then the following conditions are equivalent:

1. (4K )p is free of rank d;
2. I:Ja_1(I) ¢ P and J4(I) ¢ P;
3. Ap is regular of dimension d.

Algorithm 4.

EqQuIiRADICAL(T)
Input: anideal I in K[z1,...,z,)
Output: the radical of the equidimensional hull of 1

— choose any admissible term-ordering < on K{z1,...,zy];
— compute a Grobner basis of I and d := dim(]);
—a:=n—1;

— while a > d do
e while dim J,(I) = d do
I:=1:J,(I);
e a:=a—1;
— return I : Jg(I)

2.2 Equidimensional Hulls and Equidimensional Decompositions

Again we present two different approaches. The first approach, which is used in
several papers ([GTZ], [KL], ...), is based on Lemma 4.

Algorithm 5.

EQUIDIMENSIONAL([)

Input: anideal I in K[z1,...,2,)

Output: two ideals, the equidimensional hull E.(I) of I (¢ = codimI), and an
ideal W of codimension > ¢ such that I = E.(I) N W

— choose any admissible term-ordering < on K{z1,...,Zy];
— compute ¢ := codim(7);



— compute X[;
— Result := (1), W :=I;
— for u € XF do
e compute a Grébner basis S of W with respect to a block—ordering <
with u <<z N\ u;
e choose T, a subset of S, which is a minimal Grébner basis of W K (u)[z \
u] and compute the least common multiple h € KJ[u] of the leading
coefficients of the elements in T' as in Lemma 4;
e Result := Result N((T') : h>°) in K[z];
o W:=(W,h);
e if dim(W) < dim(Z), then
return {Result, W};
— Result = Result N EQUIDIMENSIONAL(W)[1];
— return {Result, EQUIDIMENSIONAL(W)[2]}.

Caboara, Conti and Traverso ([CCT]) propose a modification of this approach
as follows: choose a set u C z such that I N K[u] is one-codimensional. If TN K[u]
is not principal, then its generators need to have a non—trivial common divisor
and we can split I N K[u] by applying Lemma 1, 1. to a suitable power of this
divisor. If INK[u] = {g) and g factorizes into different factors, we can again split
the ideal. If g is the power of an irreducible polynomial, and if G is a Grdébner
basis of I, with respect to a block—ordering on K[z] with u << z \ u, such that
GNKJu] = {g}, then we may consider the ideal (G \ {g})K (u)[z \u] and choose
a subset T of G, which is a minimal Grébner basis of this ideal. Let h € KJu]
be the least common multiple of the leading coefficients of the elements in T
as in Lemma 4. If T : h*™ 2 I, then we can split again. If I = I : h*°, and
if g and h have no common divisor, then I is already equidimensional because
Spec K[z]n /I — Spec K[u]p/(g) is flat. If g and h have a common divisor, then
we have to apply Algorithm 5.

Remark 12. The approach above has the advantage that it also yields the equidi-
mensional decomposition of I (use recursion). With the next approach this will
be much more difficult.

The second approach goes back to Eisenbud, Huneke, and Vasconcelos
([EHVY]). It is based on the following proposition:

Proposition 13. Let I C R = K[z1,...,%,] be an ideal of codimension c. For
v > c let E,(I) be the equidimensional part of I of codimension v. Then

1. E.(I) = ann Ext{(R/I, R).
2. If Iy C I is a complete intersection of codimension c, then

EC(I) = I() : (IO : I) .

3. Forv>c¢

VE,(T) = \/E, (ann(Ext},(R/T, R))) .



We obtain the following algorithm:

Algorithm 6.

EQUIDIMENSIONAL([)
Input: anideal I in K[z1,...,z,)
Output: the equidimensional hull of T

— choose any admissible term-ordering < on K[z1,...,Z,];
— compute a Grébner basis of I and ¢ := codim(J);
— choose the first ¢ elements fi,..., f. in a set of minimal generators of I and

set I() = <f1, ey fc>;
— if Iy is a complete intersection, then

return Iy : (Ip : I);
return annExt,(R/I, R)

If we compare Algorithms 5 and 6, the second algorithm looks more ele-
gant, but our experience shows that it is very efficient only for small codimen-
sions, or for a small number of variables. Furthermore, with Algorithm 6, it
is difficult to obtain the other equidimensional parts of I, because, in general,
Q ann(Ext”R(R/ 1, R)) is strictly bigger than I, as one can see in the example

R = K[z,y] and I = (2%, zy).

In [V2] the following approach to this problem is proposed: let J, =
ann (Ext¥ (Ext%(R/I, R), R)). Then J, is equidimensional of codimension v or
Jy = R. Assume that the equidimensional parts I.,. .., I are already computed
and let Ly = I.N---N Is. Then the equidimensional hull I;q of (I + Jﬁ_l) : L,
is the (s + 1)-st equidimensional part of I. Here N is a number satisfying
(IT+JN):Ly= T +JN : Ly and JN, N Ly C Jyq L.

In any case, Proposition 13 yields an algorithm to compute a set of equidi-
mensional ideals I, of codimension v with \/E, (I) = v/T,.

Algorithm 7.

WEAKEQUIDIMENSIONAL([)
Input: anideal I in K[z1,...,zy)
Output: equidimensional ideals I,, such that \/E,(I) = /T,

— choose any admissible term—ordering < on K{z1,...,z,];
— compute a Grébner basis of I and ¢ := codim(I);
— Result := {EQUIDIMENSIONAL(I)};
— forv:=c+1tondo

e J:= ann(Exth(R/I, R));

e if codim(J) = v, then

Result := Result U{EQUIDIMENSIONAL(J)};

— return Result

Remark 14. If we need the output ideals to be radical, we just have to replace
EQUIDIMENSIONAL( ) by EQUIRADICAL( ).



2.3 Zero—dimensional Primary Decomposition

We shall first give the theoretical background, which is used for the algorithm
of Gianni, Trager, and Zacharias ([GTZ]). Notice that in [GMT], Gianni, Miller,
and Trager generalize the Berlekamp algorithm to obtain a zero—dimensional
decomposition. We do not treat this approach here.

Let K be a field of characteristic zero, or of characteristic p > 0, p sufficiently
large.

Definition 15. Let P be a maximal ideal in K|[z1,...,2,]. P is called in general
position with respect to the lexicographical ordering induced from z; > --- > z,,,
if the reduced Grobner basis of P is of type

{-Z'l — fi(zn), -, Tn-1 — fa—1(@n), fn(mn)}
with f; € K[z,)].

Remark 16. Notice that automatically f, is irreducible and deg f; < deg fn,
1< n.

Every a = (ai,...,an—1) € K™ ! defines an automorphism ¢, of

n—1
Klzy1,...,2,]) by po(zi) =z if i <n, and ¢, (2,) = zn + Y a;;.
i=1

Proposition 17. Let P C K|[z1,...,%,] be a mazimal ideal. Then there exists
a dense open subset U C K™ ! such that every ¢,(P), a € U, is in general
position with respect to the lexicographical ordering induced from 1 > --- > x,,.

Definition 18. Let I C K[x1,...,2,] be a zero—dimensional ideal. I is called
in general position with respect to the lexicographical ordering induced from
Ty > -+ > Iy, if the following holds for the minimal primary decomposition
I=Q;Nn---NQ, with associated primes Py, ..., P;:

1. Pi,..., P, are in general position with respect to the lexicographical ordering
induced from z1 > --- > x,.
2. PN KJzy,),...,PsN K[z,] are coprime.

Proposition 19. LetI C K[z1,...,z,] be a zero—dimensional ideal. Then there
is a dense open subset U C K™ 1 such that every v, (I), a € U, is in general
position with respect to the lexicographical ordering induced from x1 > -+ > x,.

Theorem 20. Let I C K[z1,...,2,] be a zero—dimensional ideal in general
position with respect to the lexicographical ordering induced from xqy > --- >
Zn, G a corresponding minimal Grobner basis of I, and {f} = G N K|z,]. Let
f=f"-...- fPs be the decomposition of f into a power product of pairwise
non—associated irreducible factors fy. Then the minimal primary decomposition
of I is given by

_ A Pk
I_kg1(1’fk ) -

10



Theorem 20 yields the following algorithm.

Algorithm 8.

ZEROPRIMDEC(I [, CHECK])

Input:  a zero-dimensional ideal in Kz, ...,z,]

Output: {Q1,P1,...,Qs, Ps}, Q; primary, VQ; = P;, P; # P; for i # j and
T=Qin-NQ,

# The ideal CcHECK and all commands involving CHECK are optional;
# CHECK is needed later on for the higher dimensional decomposition
# in order to avoid redundant components.

— Result := §;
[if cHECK C I, then
return Result;]
— compute a Grobner basis G of I with respect to the lexicographical ordering
induced from z1 > --- > z,;
—let GN K[z, ={f};
factorize f = ff* - ... fPe;
— for k:=1to s do
o [if CHECK & (I, f£*), then]
test whether (I, f£*) is primary and in general position, that is, com-
pute a Grébner basis S of (I, f¢*) with respect to the lexicographical
ordering induced from z; > --- > x,, and check whether S contains
hgk), - h%k) such that
1 B = fov

n{®
2. hgk) = (z; — ggk) (zn))" mod (hg_’f_)l, ey h%k)), i< m;
if (I, f*) is primary and in general position, then

* Pyi=(x1 — g%k), iy T — gg“_)l,fk) is the associated prime to
Qr = (I, f¢*);
* Result := Result U{Q, Pr};
else

* choose a € K™ ! by random;
* Result:=ResultUp, ' (ZEROPRIMDEC(pa ({1, f£*))[,9a (CHECK)]))

a
— return Result.

Remark 21. To make this algorithm really efficient, it is necessary to do some
preprocessing in order to avoid as many random coordinate changes as possible.
A random coordinate change destroys sparseness, and usually makes the subse-
quent Grobner basis computations very difficult. Therefore, we use the splitting
tools

LI=U:/)n{, fYifI:f=1:f%

11



to split the ideal as often as possible before starting Algorithm 8 (if in 2. the
condition (f,g) = (1) is not fulfilled, we still can apply 1. to a suitable power of
f)- In order to use 1. and 2., we produce as many reducible elements as possible.
This leads to the following preprocessing algorithm.

Algorithm 9.

SprLiT(I)

Input:  a zero—dimensional ideal I in K{[z1,...,T,]

Output: two sets of ideals, Primary = {Qi,P:,...,Qs,Ps}, and Rest =
{L,...,I}, such that I = (NQ;) N (NI;), Q; primary, and /Q; = P;

— Primary := ), Rest := 0 ;
— fori:=1tondo
e compute (F;) := I N K[z;];
e enlarge the system of generators of I by Fj;

factorize all the generators of I and split the ideal and the resulting ideals

as often as possible;

— compute for all ideals obtained in this way a Grobner basis with respect to
the lexicographical ordering induced from z1 > --- > x,;

— test whether the ideals are primary and in general position with respect to
the lexicographical ordering induced from z1 > --- > x,,; put the detected
primary ideals and their associated primes to Primary and the other ideals
to Rest;

— return Primary, Rest

Remark 22. Each ideal in Rest comes with a set of generators (which in fact
is a Grobner basis with respect to the lexicographical ordering induced from
1 > --- > x,) such that every generator is a power of an irreducible element.

Remark 23. The preprocessing for a zero—dimensional ideal, which we know to
be radical, is simpler than in the general case: we can use the fact that

\/<Iaf'g) = \/<Iaf)ﬂ\/<Iag) )

which holds without the assumption (f,g) = (1). In particular, we can use the
factorizing Groébner basis algorithm to split the ideal. Also the prime test for a
zero—dimensional ideal is simpler than the primary test:

I is prime if there is an irreducible g € I N K[z;] for some i such that deg(g) =
dimg K[z1,...,2,]/1.

Especially, we obtain:

I is prime and in general position with respect to the lexicographical ordering
induced from z; > --- > x,, if and only if for a corresponding minimal Grébner
basis G, and {g} = G N K[z,], we have deg(g) = dimg K[z1,...,2,]/I, and g
is irreducible.

The following probabilistic algorithm, proposed by Eisenbud, Huneke, and
Vasconcelos ([EHV]), also goes to general position.

12



Algorithm 10.

DecomMPEHV(I)
Input:  a zero—dimensional radical ideal I in K[zy,...,zy)
Output: the associated prime ideals

— choose a generic f € KJzi,...,%,], and test whether f is a zero—divisor
mod I (that is, check whether I : f ;2 I);
— if f is a zero-divisor mod I (which implies I = (I : f) N{Z, f)), then
return DECOMPEHV(I : f)u DECOMPEHV ((I, f));
— choose m minimal such that 1, f,..., f™ are linearly dependent mod I, and
denote by F € K[T] the corresponding dependence relation;
— if m < dimg K{z1,...,2,]/I restart the algorithm with another f;
— if F is irreducible, then
return {I};
— if F' factors as F' = (G - G5, then
return DECOMPEHV ((I, Q1 (f)))U DECOMPEHV ((I, Q2(f)))

2.4 Higher Dimensional Primary Decomposition

The minimal associated primes

One approach, proposed by Eisenbud, Huneke, and Vasconcelos ([EHV]),
starts with a radical ideal, computes all associated primes, and uses normaliza-
tion.

The normalization algorithm presented later on in 2.5 has, as input, a radical
ideal I C R = K]Jz1,...,z,] and, as output, r polynomial rings Ry,...,R,, r
prime ideals Iy C Ry,...,I, C R,, and r maps m; : R — R; such that the
induced map

m:R/I — R/, x -+ x R, /I, n(f) = (m1(f),...,m([))

is the normalization of R/I. In fact, if we plug in the computation of idempo-
tents as explained in 2.5, then the result of the normalization algorithm is the
minimal prime decomposition I = 7, *(I;) N --- N, *(I,) of I (recall that nor-
malization commutes with localization). Notice, however, that the computation
of the idempotents still needs zero—dimensional prime decomposition.

Another possibility, also reducing the problem to the zero—dimensional case,
does not necessarily need a radical ideal to start with. This approach, relying on
Lemma 4, goes back to Gianni, Trager, and Zacharias (|[GTZ]).

Algorithm 11.

MiINASsPRIMES(])
Input: anideal I in K[z1,...,zy)
Output: the minimal associated prime ideals of T

— Result := §;
— choose any admissible term order < on K|z1,...,2Z,);

13



— use the factorizing Grobner basis algorithm to split I;
the result m is a set of ideals given by Grébner bases such that
1. all elements of the Grobner bases are irreducible;
2. the radical of the intersection of the elements of m is the radical of I;
— for J € m do
e compute X;;
e for u € X5 do
*x compute Ass(JK(u)[z \ u]) by using zero-dimensional prime de-
composition;
x for P € Ass(JK (u)[z \ u]) do
Result := Result U{P N K[z]};
x compute h such that JK (u)[z N u]NK[z] = J : h;
* J = (J h);
e Result := Result U MINASSPRIMES(J);
— return Result

A third possibility, also starting not necessarily with a radical ideal, is based
on characteristic sets. We will treat this approach later.

Associated Primary Ideals
The first approach, proposed by Eisenbud, Huneke, and Vasconcelos ([EHV]),
is based on the following lemma:

Lemma 24. Let I be an ideal, P € minAss(I), and m an integer satisfying
I:P™ ¢ P. Then the equidimensional hull of I + P™ is a P-primary ideal of
a decomposition of 1.

Remark 25. If P € Ass(I) is an embedded prime, then one can obtain a
P-primary ideal () of a decomposition of I as

@ = EQUIDIMENSIONAL(I 4+ P™)

for some m. In this case, it is more difficult to estimate m (cf. [EHV]): let
Iipp={b€e R|I:b¢ P}. Then Q is a P-primary ideal of a decomposition of
I'if and only if the map (Ijp) : P*°)/I;p)) — R/Q is injective.

The Algorithm of Eisenbud, Huneke, and Vasconcelos

Algorithm 12.

PrIMARYDECEHV(T)

Input: anideal I in R = K[x1,...,2p]

Output: a set Result = {Q1, P1,...,Qs, Ps} such that I = NQ, is a minimal
primary decomposition and /Q, = P,,v =1...s.

— E := {ann(Ext%(R/I,R)), v > codim(I)};
— m:= {EQuiraDICAL(J) | J € E, J # R};

14



— compute Ass(I) = {Py,..., P} := LLEJ Ass(L) (by using the normalization
m

algorithm; notice that here all associated primes of I are computed);
— fori:=1to s do

compute Q; :=EQUIDIMENSIONAL(] + P/®) with m as in Lemma 24 or
Remark 25;

— Return {Q1, Py,...,Qs, Ps}

A second approach, based on Lemma 4, is due to Gianni, Trager, and
Zacharias ([GTZ]).

The Algorithm of Gianni, Trager, and Zacharias

Algorithm 13.

PRIMARYDECGTZ(I [, CHECK])

— Result := §;
— if CHECK is not defined, then

CHECK:=(1);
— choose any admissible term—ordering < on K{[z1,...,%,];
— if cHECK C I, then

return Result;
— compute X;;
— for u € X do
m := ZEROPRIMDEC(I K (u)[z \ u], CHECK);
Result := Result U{Q N K[z],PN K[z] | (Q, P) € m};
compute h such that IK(u)[z ~u]NK[z] =1:h=1:h?%
I :=(I,h);
for (@, P) € m do

CHECK = CHECK N @Q;

— Result = Result U PRIMARYDECGTZ(I, CHECK);
— return Result

A third approach, proposed by Shimoyama and Yokoyama ([SY]), is based
on the following two lemmata:

Lemma 26. Let I be an ideal and minAss(I) = {Py,..., P.}. Assume there are
fi,--., fr such that

- fie NP
J#i
- fi € P

Let k; be defined by I: f° =1: fF, Qi:=1:f® and J:=1I1+ (ff*,..., fk).
Then

1. \/Q; = P;, that is, Q; is pseudo—primary with associated prime P;;
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2. 1= ,ﬁlQ_iﬂJ;
7=
3. codim(J) > codim([);
4. let Q; = ﬂQ;z) be a minimal primary decomposition of Qs, i = 1,...,r.
j

Then D,Qg-i) is a minimal primary decomposition of l’rﬁlQz (no redundant
K2¥) 7=

components!) and U Ass(Q;) N Ass(J) = 0.

Remark 27. Let I be an ideal and minAss(I) = {Pi,...,P.}. Assume that

G1,...,G, are Grobner bases of Py, ..., P,. Since P; is minimal in Ass(I), there
are always elements ¢; in G; not being in P; for i # j. Now define f; := [[¢;.
J#i

Then fi,..., fr satisfy the assumptions of Lemma 26.

Lemma 28. Let Q be pseudo—primary with \/5 = P prime and u C = a maz-
imal independent set mod Q. Then QK (u)[z ~ u] N K[z] =: Q is P-primary.
Let h € K[u] be chosen such that QK (u)[z ~u]NK[z] = Q : h = Q : h?, and
set J := (Q,h). Then

1.Q=QnJ; )
2. codim J > codim(Q).

Definition 29. 1. Polynomials f; as in Lemma 26 are called separators.
2. A decomposition as in Lemma 26, 2. is called a pseudo—primary decomposi-
tion, with remaining component J and pseudo—primary components Q;.
3. A decomposition as in Lemma 28, 1. is called eztraction of Q from @Q, with
remaining component J.

We obtain the following two procedures:

Algorithm 14.

PseEUDOPRIMARYDECOMP(I)

Input: anideal I in K[z1,...,z,]

OUtPUt a set Result = {(QI;PI; f1)7 LR (Q_T7PT7fT')7 J} with Q_i7 Pi7 fi; and J
as in Lemma 26

compute minAss(I) := {Py,..., P} (use your favourite algorithm);
if r =1, then

return {(I, P1,1),{1)};
Result := 0;
— J:=1
— compute separators fi,..., fr;
—fori=1tor do
e compute k; such that I: f* =1: fho=: Q;;
e Result := Result U(Q;, P;, fi);
o Ji=(J, 15
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return Result U J

Algorithm 15.

EXTRACTION(Q)
Input: a pseudo—primary ideal Q in K[zy,...,z,], and P = \/CTQ
Output: (Q,J) as in Lemma 28

choose any admissible term-ordering < on K{z1,...,zy];
compute X;;
for u € X7 do

compute h, such that QK (u)[z ~ u]N K[z] = Q : hS;
choose h = h,, of minimal degree among all h,;
compute N with Q :=Q : kY = Q : RV *1;
return (Q, (Q, ™))

By combining pseudo—primary decompositions and extractions, we obtain an

algorithm for the computation of a not necessarily minimal primary decompo-
sition. Criteria such as Lemma 26, 4. simplify the search for redundant com-
ponents. In fact, we can do better. We may eliminate ideals, which only lead
to redundant components, much earlier in the process. This idea of Shimoyama
and Yokoyama ([SY]) is based on the next lemma. Let us first introduce some
notations.

Definition 30. 1. Pseudo—primary decomposition and extraction are also

called elementary operations. Any ideal arising from a given ideal V by one
elementary operation is called a son of V.

. When computing a primary decomposition of a given ideal I as indicated

above, the ideals arising from I via elementary operations fit as vertices into
a tree T. The edges of T are ordered pairs (W,V) such that V is a son
of W. T is called a decomposition tree of I. Vertices which are a primary
component of the resulting decomposition of I (possibly redundant), are
called component vertices.

Let V be a vertex in a decomposition tree of I. The weighted tree depth of V
is the number of edges in the path from I to V', where any edge (W,V), V a
remaining component arising from W by a pseudo—primary decomposition,
is counted twice.

Let V be a vertex in a decomposition tree of I. Let (Vi,Vit1),i=1,...,r,
be all edges in the path from I to V such that V;;1 is a pseudo—primary
component of V; arising by a pseudo—primary decomposition. The tester of
V is the product f = ngl fi, where f; is the separator corresponding to
(Vi, Vig1). V satisfies the separating condition if v/V does not contain f.
Let 7 be a decomposition tree of I. The associated reduced decomposition
tree Treq is obtained from 7 by eliminating all subtrees whose roots do not
satisfy the separating condition.

Lemma 31. Let I be an ideal in K[z1,...,z,], and let T be a decomposition
tree of I. Then:
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1. In Treq all component vertices have distinct associated primes.

2. For each prime P € Ass(I) there exists a unique component vertex Qp in
Treq associated to P.

3. I=n{Qp | P € Ass(I)} is a minimal primary decomposition.

Altogether, we obtain the following algorithm:

The Algorithm of Shimoyama and Yokoyama

Algorithm 16.
PRIMARYDECSY (])

Input: anideal I in K[z1,...,z,]
Output: a set Result = {Q1, P1,...,Qs, Ps} such that I = NQ, is a minimal
primary decomposition, and /@, = P,,v=1...s.

— Result :=0, V:={I};
- L:={1}
— w:=0;
— while I g L do
o if {V € V| weighted tree depth of V' = w} is empty, then
w:=w+1;
e choose a vertex V € V of weighted tree depth w;
e V:=V\{V}
W := {sonsof V} (apply either PSEUDOPRIMARYDECOMP(V), or
EXTRACTION(V));
if there is a component vertex () € W, then
x if L ¢ @, then
- Result:=Result U {(Q, P)}, where P is the radical of @, which
is known from a pseudo—primary decomposition before;
- L:=LNQ;
* W=W\{Q}
o V:=V U{V € W]V satifies the seperating condition};
— return Result

2.5 The Normalization

Here we describe an algorithm, proposed by T. de Jong ([J]), which goes back
to Grauert and Remmert [GR]. Other algorithms were given, for example, by
Seidenberg [Se], Stolzenberg [St], Gianni and Trager [GT], and Vasconcelos [V1].

The algorithm of De Jong is based on the following criterion for normality
due to Grauert and Remmert [GR]:

Proposition 32. Let R be a Noetherian, reduced ring. Let J be a radical ideal
containing a non—zero divisor such that the zero set of J, V(J), contains the non—
normal locus of Spec(R). Then R is normal if and only if R = Hompg(J,J).
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Remark 33. Let R and J be as in the proposition, and let f be a non—zero divisor
of J. Then

1. fJ:J=f -Hompg(J,J),
and, consequently,

2. R =Homg(J,J) if and only if fJ: J C (f).
3. Let fo = f, f1,---,fs be generators of fJ : J as an R—-module. Because
Hompg(J, J) is a ring, we have S(SH) quadratic relations of type

S
LN gile, s>izj>1, g eRr,

in —( fJ : J). Together with the linear relations, that is, the R-module
syzygies between fy, ..., fs, the quadratic relations define the ring structure
of Hompg(J, J): the map

R[T:,...,Ts] » Hompg(J,J), T;~ Ji

f

is surJectlve and its kernel is the 1deal generated by the elements of type

T;T; — Zg Ty, (with Tp = 1), and anTk, where anfk =0.
£=0

Now we are prepared to give the normalization algorithm:

Algorithm 17.

NORMAL(I [, INFORM])

Input: aradical ideal I in K[zq,...,Z,]
Output: r polynomial rings Ry,..., R, r prime ideals I; C Ry,..., I, C R,,
and r maps m; : R — R;, such that the induced map 7 : K[z1,...,2z,]/] —

Ry/I; X --- x R, /I, is the normalization of K|[z1,...,2,]/I

# Additional information provided by the user (respectively by the algorithm)
# can be given in the optional list INFORM. For example, INFORM may contain
# — the information that I defines an isolated singularity at 0 € K™
# — some elements of the radical of the non—normal locus,

# which are already known.

— Result := §;
— compute the idempotents of K[z1,...,z,]/I;
this is optional; the splitting

Klz1,...,2,)/T = K[z1,...,2,)/[1 X -+ X K[21,...,2,]/ L

defined by the idempotents is needed for the computation of the associated
primes of I as explained at the beginning of 2.4;

19



—fori:=1tot do

e compute the singular locus J of I;;
e choose f € J\ I; and compute I; : f to check whether f is a zero divisor
mod I;;
o if Iz : f 2 Ii; then
Result := Result U NORMAL(Z; : (I; : f))U NORMAL(Z; : f);
(notice that +/(L;, f) = I; : (I; : f) in this situation;)
else
if I; has an isolated singularity at 0 € K™, then
Ji={x1,...,2Tn);
else
if Jp is the radical of the singular locus of a normalization
loop before, given by the list INFORM, then
J =L, f + Jo);
else
J = /(L f);
e compute H := fJ: J=:(f, f1,..., fs);
o if H = (f), then
Result := Result U{K[21,-..,Zn), I;,idk(s,,... 2.}
else
* compute, as described in Remark 33, an ideal L such that
K[z1,...,2n,Th,...,Ts]/L = Hom(J,J), T~ f?
* S :=NORMAL(L);
x let v: K[zq,...,2,] = K[21,...,2n,T1,...,Ts] be the inclusion;
x replace S by S with all ring maps composed with ¢;
Result := Result US;

— return Result

*

It remains to give an algorithm to compute the idempotents.

We shall explain this for the case when the input ideal T is (weighted) homo-
geneous with strictly positive weights.

An idempotent e, that is, e2 — e € I, has to be homogeneous of degree 0.
Therefore, no idempotent will occur in the first loop.

Idempotents may occur after one normalization loop in Hom(J,J) =~
Klz1,...,2pn,T1,...,Ts]/L because some of the generators may have the same
degree.

Let T C {T1,...,T;} be the subset of variables of degree 0.

Then LN K[TY] is zero—dimensional because T} — Y &’ T}, € LN K[T] for all

T; € T (the weights are > 0 and, therefore, §£j eK, T,eT).
For this situation there is an easy algorithm:
Algorithm 18.

IDEMPOTENTS(I)
Input: I C Klz1,...,2,] a (weighted) homogeneous radical ideal, deg(z1) =
-+ = deg(zg) = 0,deg(z;) > 0 for i > k, I N K[z1,...,z] zero—dimensional.
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Output: ideals Ir,...,I; such that K[z1,...,zn]/] = K[z1,...,25]/1 X -+ X
K[zy,...,2,]/1;, and such that I N K[z1,...,2x] = N(L, N K[z1,...,zk]) is the
prime decomposition

— Result := §;

— J::IOK[{L'l,...,SL'k];

compute the (zero—dimensional) prime decomposition J = Py N ---N P;
for i :=1to t do

e choose g; # 0 in Q,Pu;
e Result := Result U{I : g;};
return Result

2.6 Minimal Associated Primes via Characteristic Sets

The concept of characteristic sets goes back to Ritt ([R1], [R2]) and Wu [Wu].
In our context, when applying this concept, the basic strategy is the following.

Let X be a finite set of generators for the given ideal I C Kl[xz1,...,Z,].
Compute a characteristic set of X. Successively extend this characteristic set via
pseudo—division. Split the radical of I with the help of the extended characteristic
set F. Distinguish two different types of splitting, depending on whether F is
irreducible (then F corresponds to a prime ideal) or not. When applying the
above idea recursively, the prime ideals corresponding to irreducible extended
characteristic sets provide a not necessarily minimal prime decomposition of v/I.

Let us be more precise and recall the basic definitions and facts. We refer to
[Ch], [Mi], and [W] for details and proofs.

Definition 34. Let f be a polynomial in K[x1,...,2,].

1. We define the class of f, class(f), and the class—degree of f, cdeg(f), as
follows. If f is constant, let class(f) := 0 and cdeg(f) := 0. Otherwise, let
class(f) be the maximal k such that deg,, (f) is non—zero, and let cdeg(f) :=

deg,, sy (f)-

2. Let class(f) > 0. Then the initial of f, In(f), is the leading coefficient of f
considered as a polynomial in Zejass(y)-

3. A polynomial g € K|zy,...,z,] is Ritt—Wu reduced with respect to f # 0 if

degwclass(f) (g) < degzclus(n (f)

Remark 35. The lexicographical ordering on N x N induces an ordering < on
K[zq,...,x,] via the map

Klzy,...,z,) = NxN, f = (class(f),cdeg(f)) -

< is well-founded, that is, every non—empty subset of K|[z1,...,z,] has a mini-
mal element. < is, however, not a total ordering.

21



Definition 36. Let f,g € K[z1,...,2,]. f is said to be of lower rank than g
if f < g. f and g are said to be of the same rank, f ~ g, if neither f < g nor
g < f, that is, class(f) = class(g) and cdeg(f) = cdeg(g).-

Definition 37. A finite sequence of polynomials F = {fi,...,fr} C
K[zy,...,z,) is called an ascending set, if either

1.r=1and fi #0, or

2. r>1,0<class(f1) < --- < class(fr), and each f;, i = 2,...,n, is Ritt-Wu
reduced with respect to {f1,..., fi—1}, that is, f; is Ritt—-Wu reduced with
respect to f;, j < i.

The basic computational tool in the context of ascending sets is pseudo—division
(or Ritt—Wu reduction).

Remark 38.

1. If f #0, g are polynomials in K[z, ..., z,], with class(f) = k, then pseudo—
division yields an expression

In(f)*g = qf +r, with deg, (r) < deg, (f) ,

and with @ := max{0,deg, (g9) — deg, (f) + 1}. The pseudo—quotient
pquot(g|f) = ¢ and the pseudo—remainder prem(g|f) = r are uniquely de-
termined. Clearly, g is Ritt—Wu reduced with respect to f if and only if

prem(g|f) = g.

2.Let F = {fi,...,fr} C Klz1,...,2,] be an ascending set
with class(f1) > 0, and g € Klz1,...,2,]- The pseudo-
remainder prem(g|F) = prem(g|fi,...,fr) is inductively defined by

prem(g|fi,...,fr) = prem(prem(g|fs,...,fr)|f1). Note that there is an
expression of type

In(f1)* -...-In(f)""9g = q1 fr + - -- + ¢ fr + prem(g|F) .

Clearly, g is Ritt—Wu reduced with respect to F if and only if prem(g|F) = g.

Remark 39. A well-founded ordering < on the set of ascending sets is defined as
follows. If two such sets F = {f1,..., f-} and G = {¢1,...,9s} are given, then
F < G, if either

1. fi < g; for the first ¢ with f; £ g;, or
2.r>sand fy~g,i=1,...,s.

Definition 40. Let X be any non—empty subset of K[z1,...,2,]\ {0}. A mini-
mal element of the set of ascending sets contained in X is called a characteristic
set of X.

Since < is a well-founded ordering, minimal elements do exist. If X is finite,
then there is an obvious algorithm for the computation of a characteristic set:
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Algorithm 19.

CHARSET(I)
Input: a finite subset X of K[z1,...,z,] \ {0}
Output: a characteristic set of X

— Result := (), Rest := X;
— while Rest # 0 do
e choose f of lowest rank in Rest;
e Result := Result U {f};
o if class(f) = 0, then
Rest := 0;
else
Rest:= {g € Rest ~ {f}| g is Ritt-Wu reduced with respect to f};
— return Result

Definition 41. Let X be any finite subset of K[z1,...,z,]\ {0}, and I = (X)
the ideal generated by X. An ascending set F = {f1,...,fr} C I is called an
extended characteristic set of X, if either

1. r =1 and f; is constant, or
2. class(f1) > 0 and prem(g|F) =0 for all g € X.

The existence of extended characteristic sets is clear from the following algo-
rithm (R#tt-Wu process) for the computation of an extended characteristic set.
Since < is a well-founded ordering, the termination of this and the subsequent
algorithms is guaranteed by

Remark 42. Let X be any non—empty subset of K[z1,...,z,]\ {0}, F a char-
acteristic set of X, and g € K[z1,...,z,] \ {0} Ritt-Wu reduced with respect to
F. Then G < F for every characteristic set G of X U {g}.

Algorithm 20.

EXTCHARSET(J)
Input:  a finite subset X of K[z1,...,2z,]\ {0}
Output: an extended characteristic set of X

— Int := Rest := X
— while Rest # 0 do
e Result := CHARSET(Int);
o if Result = {f} with f € K, then
Rest := {J;
else

Rest := {prem(g| Result) #0| g € Int \ Result };
e Int := Int U Rest;

— return Result

We next explain how characteristic sets are related to primary decomposition.
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Definition 43. Let F = {f1,..., fr} C K[z1,...,z,] be an ascending set, and
let m = n—r. After renaming the variables we may assume that class(f;) = Zmt,
1 =1,...,r. With this assumption F is called irreducible, if each f; is irreducible
in K;[%m4i], where K; is inductively defined by K; := K(z1,...,Zm), and K; :=
Ki1[zmyi-1]/{fi-1)-

Proposition 44. Let F = {f1,...,fr} C K[z1,...,z,] be an irreducible as-
cending set. Then

P = {g € K[mlv' .- ,.’L‘n] | prem(g|f1,. --:fr) = 0}
is a prime ideal with F as a characteristic set.

It follows from the pseudo-remainder formula in Remark 38, 2. that P can
be computed via Grobner bases:

Lemma 45. Let F = {f1,..., fr} C K[z1,...,2,] be an irreducible ascending
set, J = (F) the ideal generated by F, and P the prime ideal with characteristic
set F as in Proposition 44. Then

P=(..((J:In(f1)*) : In(f2)>) :...) : In(f)*> .
Now we come to the two different types of splitting.

Lemma 46. Let X be any finite subset of K[z1,...,2,] \ {0}, I = (X) the
ideal generated by X and F = {f1,..., fr} an extended characteristic set of X.
Suppose that F is irreducible, and let P be the prime ideal with characteristic
set F as in Proposition 44. Then

VI=Pn/{Xu{ln(f)}h)n---n /(X U{In(f)})
The following remark allows the application of Lemma, 1.

Remark 47. Let F = {f1,...,fr} C Kl[z1,...,2,] be a reducible ascending
set. Assume that the variables are ordered as in Definition 43 with m = n —
r7.Choose i minimal with {fi,..., fi} reducible. Let f; = h%* -...- h?* be the
factorization of f; into irreducible factors over K;. Then there is a relation of
type g = Gf; — h{* - ... h* in K[z1,...,2,], where h; is obtained from h; by
clearing denominators, and where G € K|[z1,...,%,]. Then g, considered as a
polynomial in K; 1[%,4i], is zero. The irreducibility of {f1,..., fi—1} implies
that prem(g|f1,-.., fi—1) = 0. Hence there exist s1,...,s;_1 such that In(f;)°* -
e In(fiza)%i-thyt - . - W2 € (f1,..., fi). Define g; := prem(h;|fi,..., fi—1),
j=1,...,s Then all g; are Ritt-Wu reduced with respect to F, class(g;) =
class(f,-), and In(fl)sl et In(fi,l)si—lgfl R gs (S (fl; .. ,fz)

Altogether we obtain the
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Algorithm 21.

MINAsSPRIMESCHARSETS(])
Input: anideal I in K[z1,...,zy)
Output: the minimal associated primes of I

—let Y C K[z1,...,2,] \ {0} be a finite set of generators of I;
— Result := 0, Rest := {Y'};
— while Rest # () do
e choose X € Rest;
Rest:= Rest \{X};
F := EXTCHARSET(X);
if F = {f} with f € K, then
return (1);
else
if F is irreducible, then
* Result := Result U {F};
* Rest := Rest U {X UF U {In(f)} | f € F,class(In(f)) > 0};
else
* find fy,..., fi—1 € F and g1,...,9s as in Remark 47;
* Rest := Rest U{X UF UIn(f;)|j =1,...,i—1}
U{XUFU{g}li=1,...,s,class(In(f;)) > 0};
let Result = {Fy,...,Fr};
— fori=1to k do
o J:=(Fi);
o for f € F; do
J = J: In(f)>;
e Result := (Result \{F;}) U{J};
omit redundant prime ideals in Result;
— return Result

3 Examples

All algorithms described in Section 2 are, or are about to be, implemented in
SINGULAR.

In this Section we compare the implementations. In the table below we give
the timings (in seconds) for 34 examples computed on a HP 720. “x” means that
the computation was stopped after three hours. All computations are done over
the prime field K = F35993. The ordering of the monomials is always the degree
reverse lexicographical ordering with the underlying ordering of the alphabet.

In the first column we give the timings for the computation of the minimal
associated primes via characteristic sets (Algorithm 22). In the second column,
we list the timings for the computation of the associated primes by first us-
ing Algorithm 7 (WEAKEQUIDIMENSIONAL), followed by a prime decomposition
of the equidimensional parts via Algorithm 11. The third column gives the
timings for the minimal associated primes by using Algorithm 11. The fourth
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column contains the timings for a complete primary decomposition following
Gianni, Trager, and Zacharias (Algorithm 13). The £ifth column gives the tim-
ings for the primary decomposition by using the Algorithm 16 of Shimoyama
and Yokoyama and computing the minimal associated primes via characteristic
sets. In this column “x, 46” means that the characteristic sets algorithm could
not compute the minimal associated primes, and that we need 46 seconds with
Algorithm 16, if we first compute the minimal associated primes via Algorithm
11. In all other cases, the timings for Algorithm 16, based on Algorithm 11, can
be obtained by subtracting the first column from the fifth column and adding
the third column. The next two columns give the timings of the computation of
the equidimensional radical and the radical by using a combination of the Algo-
rithms 1, 2, and 3 (we use 2 and 3, if the first ¢ generators of a ¢—codimensional
ideal already form a regular sequence, and if the number of variables is less or
equal to 5). Column 8 contains the information on the number and the dimension
of the components. 3,..., 3,0, for instance, means 15 components of dimension 3
~——

1
and one component, of jimension 0. Column 9 indicates, whether the given ideal
is already radical or not. Finally, column 10 contains the number of embedded
components.

The examples show that there is no unique strategy for the computation
of primary decompositions. Sometimes much more time is used for computing
the radical or the minimal associated primes than for the complete primary
decomposition & la Gianni, Trager, and Zacharias. The reason for this is the use
of the factorizing Buchberger algorithm, which is usually very efficient (in a few
cases, however, it can be quite time—consuming).

1. Chemistry (describes a chemical processes in glass melting)

a+2b+c—d+g,

f2gh_a7
efg—c,
fg2.7 _b7

atb+c+f+g—1,
3ad+3bd+2cd+df +dg—a—2b—c—g.

2. Sturmfels and Eisenbud (the 2 x 2— permanents of a generic 3 X 3-matrix,
cf. [ES, Example 3.5])

su + bv,
tu + bw,
tv + sw,
sz + by,
tx + bz,
ty + sz,
VT + Uy,
wT + uz,
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wy + vz.
. Schimoyama/Yokoyama (cf. [SY, Example J])

$y2z2 — a:y2z + a:yz2 —TYz,

$y3z + a:y2z,

zy* — zy?,

22y2? — 2?yz,

o2y® — a2y?,

2428 — 2% + 2082°% — 22322 4 2228 — 2222,
o2y2z,

rlyz + 23yz,

2z%y? + 62%y? + 62292 + 2y + 22,

2Pz 4+ 2222 + 2tz + 22322 — 282 + 2222 — 222,
28y + 328y + 3zty + 23y.

. Schimoyama/Yokoyama (cf. [SY, Example St])

su — bv,
tv — sw,
VT — Uy,
wy — vz.

. Butcher(cf. [W, Example 12], [BGK], POSSO test suite)

a+c+d—e—h,

2df + 2cg + 2eh —2h%* —h —1,

3df? + 3cg? — 3eh? + 3h® + 3h? — e + 4h,

6bdg — 6eh? + 6h® — 3eh + 6h% — e + 4h,

4df3 + 4cg® + 4eh® — 4h* — 6h° + 4eh — 10h% — h — 1,

8bdfg + 8eh® — 8h* + 4eh? — 12h° + 4eh — 14h* —3h — 1,
12bdg? + 12eh® — 12h* + 12eh? — 18K + 8eh — 14h? — h — 1,
— 24eh3 4 24h* — 24eh? + 36h3 — 8eh + 26h% + Th + 1.

. Gonnet (cf. [BGK], POSSO test suite)

ag,

9j +am+np +q,

bl,

ng,

bg+bk+al+lo+Ilp+b+ec,
ag+ak+jl+bm+bn+go+ko+gp+kp+lg+a+d+f+h+o+p,
gj+jk+am+an+mo+no+mp+np+g9gg+kqg+e+j+qg+s—1,
Jjm+ jn + mq + ng,

Jn + mq + 2ngq,

g7 +am + 2an +no + np+ 2g9q + kq+ q + s,
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2ag+ak+bn+go+gp+lg+a+d,

bg + al,

an + gq,

2im 4+ jn + mgq,
gj+jk+am+mo+2mp+np+e+25+q,
jl+bm+gp+kp+a+ f+o+2p,

Ilp+0,

in+ mgq,

gp + a.

. Horrocks (related to the Horrock bundle on P5, cf. [DMS])

2adef + 3be? f — cef?,

dad® f + 5bdef + cdf?,

2abdf + 3b%ef — bef?,

4a?df + 5abef + acf?,

4ad®e + 3bde? + Tcdef,

2acde + 3bce? — c’ef,

4abde + 3b%e? — dacdf + 2bcef — c? f?,
4a’de + 3abe® + Tacef,

dacd? + 5bede + 2 df,

4abd? + 3b%de + Tbedf,

16a%d? — 9b%e? + 32acdf — 18bcef + 7c? f2,
2abed + 3b%ce — b2 f,

4a’cd + 5abce + ac? f,

4a2bd + 3ab%e + Tabcf,

abc® f — cdef?,

ab’cf — bdef?,

2a%bef + 3be? f2 — cef?,

ab® f = 3bdf?,

2a%b2 f — 4adf® + 3bef3 — cf?,
a®bf + daef?,

3acde — cde?,

3b2ce — b3 f + 2cd?ef,

abc’e — cde? f,

6a’c’e — 4ade® — 3be* + ce3f,
3b3ce — b2 f + 2bd2ef,
2a%bce + 3bed f — ce? f2,

3a3ce + 4ae’f,

4bc®d + cd?e,

dacdd — 3bc®e — 2cd?e? + ctf,
8b%c?d — 4ad* — 3bd3e — cd® f,
4bPed + 3hdd f,

4ab3d + 3b'e — bicf — 6bd? f2,
4a*d + 3a®be + a’cf — 8ae? f?
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. Arnborg-Lazard (POSSO test suite)

2?yz + wy?z + vy2® + Yz + 7Y + T2 + Y2,
22’2 + 2?2 + 2Pyz+yz +yz+x + 2,
$2y2z2 + $2y2z + ary2z +zyz+z2+ 2+ 1.

. Schwarz (constructing idempotents in group theory)

—ab — b% — 2de — 2ch,

—ac — 2bc — €% — 2dh,
—c? — ad — 2bd — 2eh,
— 2cd — ae — 2be — h?,
—d? — 2ce — ah — 2bh.

. Katsurad (POSSO test suite)

2t2 +u? + 222 + 2y% + 222 —u,
2tu + zy + 2tz + 2yz — t,

t2 + 2ty + 2uz + 222 — 2,

2tz 4+ 2uy + 2tz — y,
2t+u+2x + 2y + 22— 1.

. Katsurab (POSSO test suite)

222 + 292 + 222 + 2t2 + 2u? + v? — v,
zy + yz + 22t + 2tu + 2uv — u,

2xz + 2yt + 2zu + u? + 2tv — t,

2zt + 2yu + 2tu 4 22v — 2,

12 4 2zv + 2yv + 220 — y,

20+ 2y + 224+ 2t 4+ 2u+v—1.

. Cyclic roots 5 homog (cf. [BF])

a+b+c+d+e,

ab+ bc + cd + ae + de,

abc + bed + abe + ade + cde,

abed + abce + abde + acde + bede,
abcde — h®.

. Cyclic roots 5 (cf. [BF], POSSO test suite)
a+b+c+d+e,
ab+ bc + cd + ae + de,

abc + bed + abe + ade + cde,
abcd + abce + abde + acde + bede,
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14.

15.

16.

abcde — 1
Cyclic roots 4 (cf. [BF], POSSO test suite)

a+b+c+d,

ab+ bc + ad + cd,

abc + abd + acd + bed,
abed — 1.

Roczen (related to the classification of singularities
in positive characteristic)

o+1,
k* + K,

gh,
g*+h+E +1,
Ik,

A+ 7

eh,

ef,
PR+ ++ P+ + k2 +1,
g+ fP9+yg,
et + e,

dh® + dk® + d,
dg,

df,

de,

& +e+f2+1,
6292+d2h2+c,
f2g2+d2k2+b,
f2h? + e2k2 +a.

De Jong (related to the base space of a semi—universal
deformation of a rational quadruple point)

—2hjk + 4ef + bj + ak,

— 2hjl + 4eg + cj + al,

—4fhj — 4ehk — djk + 2be + 2af,
— 4ghj — 4ehl — djl + 2ce + 2ag,
— 2dfj — 2dek + ab,

— 2dgj — 2del + ac.
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17.

18.

19.

20.

21.

Becker-Niermann (example for testing FGLM)

y* +ry’z + 22 — 20y + 92 + 22,
—23y? + 2y2® + y* + 2y?2 — 21y,
zyt + y2* — 222y — 3.

Caprassed (POSSO test suite)

Y2z + 2zyt — 2 — 2,

— 232 + day?z + 42yt + 293t + 42? — 1092 + 4z — 10yt + 2,
2yt + 2t? — x — 22,

— x2° + 4yt + dxzt® + 2yt® + 4z + 422 — 10yt — 1012 + 2.

Cassou (POSSO test suite)

6b%c® + 21b%c%d + 15b%cd? + 9b*d® — 8b%c?e — 28b%cde + 36b%d%e — 144b%c

— 648b%d — 120, 9b*c* + 30b*c3d + 39b*c2d? + 18bied® — 24b%ce — 16b%c2de
+ 16b%cd?e + 24b%d3e

— 432b%¢? — 720b%cd — 432b%d? + 16¢%e? — 32cde? + 16d%e? + 5T6¢ce — 576de
— 240c + 5184,

— 15b%ce + 15b%c%de — 81b%c? + 216b%cd — 162b%d? + 40c*e® — 80cde?

+ 40d?e? + 1008ce — 1008de + 5184,

— 4b%c? + 4b%cd — 3b2d? + 22ce — 22de + 261.

mat3? (the square of a generic 3 x 3-matrix, POSSO test suite)

a? + bd + cg,
ab + be + ch,
ac+ bf + ci,
ad+de + fg,
bd + e + fh,
cd+ef + fi,
ag + dh + g1,
bg + eh + hi,
cg+ fh+i2.

Shimoyama/Yokoyama (cf. [SY, Example Ig]

—k +9k81 — 36k71% + 84KkC1% — 126k51* + 126k415 — 84Kk31° + 36K21" — 9KkI® +1°,
— bk® + 8bk"1 + k81 — 28bk51% — 8K712 + 56bk513 + 28k513 — TObk4* — 56K51* +
56bk>31° + TOK*1® — 28bk21® — 56K316 + 8bkI™ + 28K217 — bI® — 8kI® +1°,

ck” — TckS1 — k71 + 21ck®1? + TESI% — 35ck*1® — 21K°1% + 35¢k31* + 35k41 —
21ck?15 — 35K315 + Tckl® + 21k2%16 — cl” — TKI7 + 18,

— dk8 + 6dk51 + k81 — 15dk*1% — 6512 4 20dk> 1% + 15k*1° — 15dk21* — 2031 +
6dkl® + 15k215 — dI® — 6kI® + 17,

ek® — 5ek*l — kPl 4 10ek31? + 5k*12 — 10ek?1® — 10k31° + 5ekl* + 10k21* —
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22.

23.

24.

el® — 5Kkl + 1,

— FEY + AFKSL+ KA — 6F K212 — AR3I2 + AfKIS + 6213 — fI14 — 4KI* + 15,
gk® — 3gk°1 — k31 + 3gkI? + 3k212 — gI® — 3kI® + 14,

— hk? + 2hkl + k21 — hi2 — 2k + I3,

ik — 1 — kL + 2.

Gerdt (cf. [BGK], POSSO test suite)

2tw + 2wy — wz,

2uw? — 10vw? + 20w® — Ttu + 35tv — 70tw,

6tw? + 2w?y — 2w?z — 21t? — Tty + Ttz,

20 — duvw — 5v?w + 6uw? + Tvw? — 15w — 42vy,

6tw + 9wy + 2vz — 3wz — 21z,

Juw?® — 450w + 135w + 14tv? — 70tuw + 196tvw — 602tw? — 14v? 2 + 28uwz +
ldvwz — 28w?z + 147uz — 7350z + 2205wz — 294ty + 98tz + 294yz — 9822,
36tw3 + 6wy — w2z — 1682w — 14v2x + 28uwz + 1dvwx — 28w? x — 28twy +
42twz + 588tz + 392zy — 24522,

2uvw — 6vw — uw? + 13vw? — 5w — 28tw + 14wy,

ww — 3uvw + Suw? — 28tw + 14wy,

tuw + tow — 11tw? — 2wy + 8wy + vwz — Jvwz + dSw?z — 21wz,

Stuw — 1 Ttvw + 33tw? — Tuwy +22vwy — 39w?y — 2uwz +6vwz — 10w?z + 63wz,
20t2w — 12uwz + 30vwz — 15wz — 10twy — Stwz + dwyz,

42w — buwz + 120wz — 6w’z + 2twy — 2wy? — 2twz + wyz,

8twz + 8wzy — dwxz

Moller (cf. [Moe])

a+b+c+d,

u+v+w+z,

3ab + 3ac + 3bc + 3ad + 3bd + 3cd + 2,

bu + cu + du + av + cv + dv + aw + bw + dw + az + bz + cz,

bcu + bdu + cdu + acv + adv + cdv + abw + adw + bdw + abx + acx + bex,
abc + abd + acd + bed,

bedu + acdv + abdw + abe.

Riemenschneider (related to deformations of quotient singularities)

su,
v,

qu,

Tz,

str + uz,

wv® — vow + ur,

— pu?v® + pulw + qtz,
tz2y — uv’z + uwz.
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25.

26.

27.

28.

29.

30.

Mikro (coming from analyzing analog circuits)

59ad + 59ah + 59dh — 705d — 1199h,

330acde + 330aceh + 330cdeh — 407acd — 1642ade — 1410cde — 407ach —
407cdh — 1642aeh — 2398ceh — 1642deh,

— 483acd — 483ach — 483cdh + 821ad + 705¢d + 821ah + 1199¢ch + 821dh,
13926abede + 13926abceh + 13926bedeh — 9404abed — 9239abde — 4968acde —
13157bede — 9404abch — 9404bedh — 9239abeh — 4968aceh — 13025bceh —
9239bdeh — 4968cdeh,

— cde — 377cdh — ceh — deh,

— bdacf — bdadf +a+d,

adfg +a+d.

Amrhein (cf. [AGK, Example S6])

a® +d% 4 2ce + 2bf +a,
2ab + 2de + 2¢f + b,
b% + 2ac + €2 + 2df +c,
2bc + 2ad + 2ef + d,
¢ +2bd + 2ae + f? +e,
2cd + 2be + 2af + f.

Buchberger (POSSO test suite)

t—b—d,
r+y+z+t—a—c—d,

rz +yz + xt + 2t — ac — ad — cd,
zzt — acd.

Lanconelli (POSSO test suite)

a+c+d+e+f+g+h+j—1,

— 2k —2cdk — d?k — cek — dek — cfk — dfk — cgk — dgk — egk — fgk — chk —
dhk — ehk — fhk + ¢+ d,

— 2l —cdl —cel —cfl—cgl —dgl —egl — fgl +c?+2cd+d? +cg+dg+ch+dh,
—b+c+e+g+j.

Huneke
515,
15
17,
15
u ?

ud — 3tz + %12z + s2t2y — stiy.

Wangl (cf. [W, Example 13])
f2h' - 17
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31.

32.

33.

34.

ek? -1,

g2l - ]-7

2€fzg2hk2+f292h2k2+2€f292k2l+2f292hk‘2l+f2g2k2l2+Ck2,
2e2fg2hk? + 2efg>h2k? 4 2e2 f9?k%l + def g hk21 +2f 9> h2 K21 + 2e f g2 k212 +
2£g2hk2 + 2bfh,

2e? f2ghk? + 2e f2gh’k? + 2e? f2gk?l + de f2ghk?l + 2 f?gh*k?l + 2e f2gk>1% +
2f2ghk?1% + 2dgl,

e2f29%k? + 2ef2g>hk? + 2ef?g° k%l + 2f2g*hk*l + f2g%k?1? + bf2,
2e2f2g2hk + 2e f2g2h%k + 2e2 f2 g%kl + de f2g?hkl + 2 f2 g2 h2kl + 2e f2 g2 kI +
21292hkl? + 2cek,

62f2g2k‘2+26f292hk‘2+f2g2h2k2 +26f2g2k'2l+2f2gzhk2l+dg2,
_e2f2g2hk2_ef292h2k2_e2f2g2k.2l_2ef292hk.2l_f2g2h2k2l_efzg2k.2l2_
f2g2hk2l2 +a2_

Wang2(cf. [W, Example 7])

2? +y? + 27 - 2,
zy +22 -1,
ryz —x? —y? — 2+ 1.

Siebert

w2wy +wlzz + w2z2,
tey + 22yz + 1222,
twy? + ty?z + y222,
twzr + 2wz + 1222,

Macaulay (Macaulay2 tutorial)

bt — add,

ab® — a’c,

bet — ac®d — bed® + ad?,

S —bcBd? — Ad® + bd,

ac® — b2ccd — actd® + b*d?,
a’c* — a®d® + b*d® — a’cd®,
b3c® — ald?,

ab’c® — a®cd? + b3cd? — ab®d?,
a?bc® — a®c?d + b3c*d — a®bd?,
a’c® — a’bd?,

a*c® — a®b?d.

Amrhein2 (cf. [AGK])
a® + 2de + 2¢cf + 2bg + a,
2ab + €% + 2df + 2cg + b,

b2 + 2ac + 2ef + 2dg + c,
2bc + 2ad + f% + 2eg +d,
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c® +2bd + 2ae + 2fg + e,
2cd + 2be + 2af + g% + f,
d?> + 2ce + 2bf + 2ag + g.
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Ass primary dec.| radical dim is  |embed.
char Set|EHV|GTZ|GTZ SY|equiR| rad reduced|comps.
1 2 9 3 1 35 6| 11 3,3,3,3 no no
2 6| 32 5[ 31 35 2 2 3,...,3,0 no 1
——
15
3 1 ol o 4 3 o ol 21,1,1,10,...,0 no 7
N——r
6
4 1 1] 3 1 13 of 1 6,6,5,4 no 1
5 3| x| 12|1210 20 9 9| 3,3,3,2,2,2,2,0,0,0 no 2
6 9 * 2 1 20 9 9 3,3,3 no no
7 15| 25 2 5 16 1 1 3,3,3,3,3,3 yes no
8 5 2 4 1 22 4 5 0,...,0 yes no
——
14
9 * 3| 10 4] x,46 2 2 1,...,1 yes no
N———r
12
10 6 5 2 2 12 1 2 1,...,1 yes no
——r
9
11 ¥ 83 7 5 *,41 9 9 1,...,1 yes no
N —r
6
12 44| 89| 70| 111 452 35| 35 1,...,1 no no
N———r
25
13 x| 52| 402| 35| =*,548| 396| 396 0,...,0 no no
———r
20
14 2 0 1 3 3 0 1 1,1,0,...,0 no 6
N——r
6
15 103|  « 14| 12| 123 2l 2 0,...,0 no no
———r
30
16 21| 98| 354 6 31 9| 270 8,7,6,5 yes no
17 123| 14| 26| 18 125 14| 14 0,0 yes no
18 18| 52| 93 7 64 19| 19 0,...,0 no no
——r
19
19 * 2| 71 1 *,42 44| 88 1,1 yes no
20 114| 360 2 5 122 3| 27 4,0 no 1
21 1 167 1| 6 12 1 2| 98,7,6,5,4,3,2,1 no 8
22 5/ % 3 10 13 2| 2| 2,2,2,1,1,1,1,1,0 no 2
23 17|« 10| 16 68 6 6| 2,...,2,1,...,1 no 12
——— N——
10 17
24 3 21 1 11 11 o 1 8,6,6,4,4,4 no 1
25 35 * 2| 325 43 5| 342 54,3,3,1,1 no 2
26 «| 101| 14| 13| %,224| 12| 13 0,...,0 no no
N —r
40
27 7 2 1 1 9 1 1 4,44 yes no
28 25 4 1 2 91 4 4 7,7 yes no
29 1| x| 1|1734| 4266 11| 2,1,...,1,0 no 11
——
10
30 26 %/ bl| b8 115 7 7 1,...,1 no no
———r
18
31 6 0 2 2 6 0 0 1 yes no
32 2| x| 1] 50 21 1 102,2,22,221,...,1,0 no 9
——
10
33 0 1 2 0 0 2,1,1 no no
34 *| 7132 110 *,%| 7190(7190 1,...,1 yes no
N —r
128
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