Skip to main content

Computer Algebra Investigation of Equivalence in 4-node Plane Stress/Strain Finite Elements

  • Conference paper
  • 298 Accesses

Abstract

In this investigation, with the aid of computer algebra, a diagram showing equivalences between finite element formulations or techniques, among which including two newly formulated hybrid mixed field principles, in a 4-node plane stress/strain element was obtained. In the investigation, some known equivalence relations were confirmed; some new equivalence relations, mainly between the hybrid mixed field formulations and the others, were detected. The investigation shows that with computer algebra it is much easier to conduct parameter study in simple elements and it might provide a powerful tool for exploring more complex equivalence relations in higher order elements. It is observed from the investigation that if a finite element technique is hard to fit in a conventional variational principle, it might have a counterpart in a properly modified variational principle. The obtained equivalence diagram might provide information for establishing a more generally valid mathematical principle or theorem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Pröier; L. Nilsson and A. Samuelsson. The rectangular plane stress element by Turner, Pian and Wilson. Int. J. Numer. Meth. Engng., 8, 433–437, 1974.

    Google Scholar 

  2. T. H. H. Pian and T. Pin. Relations between incompatible displacement model and hybrid stress model. Int. J. Numer. Meth. Engng., 22, 173–181, 1986.

    Article  MATH  Google Scholar 

  3. G. A. Mohr and P. L. Cook, On near equivalence of assumed stress and reduced integration formulations of the bilinear plane stress finite element, Computers & Structures, 21, 475–478, 1985.

    Article  Google Scholar 

  4. H. Shimodaira, Equivalence between mixed models and displacement models using reduced integration, Int. J. Numer. Meth. Engng., 21, 89–104, 1985.

    Article  MATH  Google Scholar 

  5. J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Meth. Engng., 29, 1595–1638, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Stolarski and T. Belytschko, On the equivalence of mode decomposition and mixed finite elements based on the Hellinger-Reissner principle. PART I: Theory, Comput. Methods Appl. Mech. Engrg., 58, 249–263, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Stolarski and T. Belytschko, On the equivalence of mode decomposition and mixed finite elements based on the Hellinger-Reissner principle. PART II: Application, Comput. Methods Appl Mech. Engrg., 58, 265–284, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Stolarski and T. Belytschko, Limitation principles for mixed finite elements based on the Hu-Washizu variational formulation, Comput. Methods Appl. Mech. Engrg., 60, 195–216, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. T. Yeo and B.C. Lee, Equivalence between enhanced assumed strain method and assumed stress hybrid method based on the Hellinger-Reissner principle, Int. J. Numer. Meth. Engng., 39, 3083–3099, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Zhang. Further study of the identity of incompatible displacement element and generalized hybrid element. Acta Mechanica Sinica, 23, 564–570, 1991.

    Google Scholar 

  11. P. J. Zhao; T. H. H. Pian and Y. Sheng. A new formulation of isoparametric finite elements and the relationship between hybrid stress element and incom-patible element. Int. J. Numer. Meth. Engng., 40, 15–27, 1997.

    Article  Google Scholar 

  12. B. W. Char; K. O. Geddes; G. H. Gonnet; B. L. Leong; M. B. Monagan and S. M. Watt. Maple V language reference manualSpringer-Verlag, 1991.

    Book  MATH  Google Scholar 

  13. S. Wolfram. The Mathematica Book, 3rd edition. Wolfram Media, Inc., Cam-bridge, 1996.

    MATH  Google Scholar 

  14. E. D. L. Pugh; E. Hinton and O. C. Zienkiewicz. A study of quadrilateral plate bending elements with ‘reduced’ integration. Int. J. Numer. Meth. Engng., 12, 1059–1079, 1978.

    Article  MATH  Google Scholar 

  15. T. J. R. Hughes; R. L. Taylor and W. Kanoknukulchai. A simple and efficient finite element for plate bending. Int. J. Numer. Meth. Engng., 11, 1529–1543, 1977.

    Article  MATH  Google Scholar 

  16. R. D. Cook. More reduced integration and isoparametric elements. Int. J. Numer. Meth. Engng., 5, 141–142, 1972.

    Article  Google Scholar 

  17. H. Stolarski and T. Belytschko. Membrane locking and reduced integration for curved elements. Transactions of the ASME. J. Appl. Mech., 49, 172–176, 1982.

    Article  MATH  Google Scholar 

  18. E. L. Wilson; R. L. Taylor; W. P. Doherty and J. Ghaboussi. Incompatible displacement modes. In Numerical and Computers Models in Structural Mechanics, ed. by S. J. Fenves et al. Academic Press, New York, 1973.

    Google Scholar 

  19. T. H. H. Pian. Derivation of element of stiffness matrices by assumed stress distribution. AIAA J., 2, 1333–1336, 1964.

    Article  Google Scholar 

  20. T. H. H. Pian and C. C. Wu. A rational approach for choosing stress terms for hybrid finite element formulations. Int. J. Numer. Meth. Engng., 26, 2331–2343, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. H. Luo and A. Eriksson. Extension of field consistence approach into de-veloping plane stress elements. Comput. Methods Appl. Mech. Engrg., 1998. Accepted.

    Google Scholar 

  22. Y. H. Luo and A. Eriksson. An alternative assumed strain method. Comput. Methods Appl. Mech. Engrg., 1998. Accepted.

    Google Scholar 

  23. Y. H. Luo . Two hybrid mixed variational principles for developing high perfor-mance finite elements. Int. J. Numer. Meth. Eng., 1998. Submitted.

    Google Scholar 

  24. Y. H. Luo and A. Eriksson. Investigation of equivalence between mixed field formulation and reduced integration with symbolic computation software. Int. J. Numer. Meth. Engng., 1998. Submitted.

    Google Scholar 

  25. MATLAB Reference Guide, Math Works Inc., Natick, 1993.

    Google Scholar 

  26. Y. H. Luo. On Some Finite Element Formulations in Structural Mechanics. Doctoral Thesis, Stockholm, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eriksson, A., Luo, Y., Pacoste, C. (1999). Computer Algebra Investigation of Equivalence in 4-node Plane Stress/Strain Finite Elements. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing CASC’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60218-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60218-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66047-7

  • Online ISBN: 978-3-642-60218-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics