Skip to main content

Binocular Information Processing in the Owl

  • Conference paper
Informatik ’97 Informatik als Innovationsmotor

Part of the book series: Informatik aktuell ((INFORMAT))

  • 170 Accesses

Abstract

Behavioural experiments on disparity-based depth perception in two barn owls (Tyto alba) implicate that these frontal-eyed predatory birds can acquire depth information through stereopsis. Neurophysiological data revealed that disparity sensitivity in telencephalic neurons is due to position-shifts, phase-shifts, or a hybrid of the two. Computational modeling demonstrated that depth extraction is possible from the outputs of such cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marr, D.: Vision. San Francisco: Freeman (1982).

    Google Scholar 

  2. Julesz, B.: Foundations of cyclopean perception. Chicago: University Chicago Press (1971).

    Google Scholar 

  3. Harwerth, R. and Boltz, R.: Behavioral measures of stereopsis in monkeys using random dot stereograms. Physiology and Behavior 22 (1979) 229 – 234

    Article  Google Scholar 

  4. Ohzawa I., DeAngelis G. and Freeman R.: Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249 (1990) 1037 – 1041

    Article  Google Scholar 

  5. Wagner H. and Frost B.: Disparity-sensitive cells in the owl have a characteristic disparity. Nature

    Google Scholar 

  6. Anzai A.,Ohzawa I. and Freeman R.: Neural Mechanisms underlying binocular fusion and stereopsis: Position vs. phase. PNAS 94 (1997) 5438 – 5443

    Article  Google Scholar 

  7. Qian, N.: Computing Stereo Disparity and Motion with Known Binocular Cell Properties. Neural Computation 6 (1994) 390–404

    Article  Google Scholar 

  8. Fleet D., Wagner H. and Heeger D.: Neural encoding of binocular disparity - energy models, position shifts and phase shifts. Vision Research. 36 (1996) 1839 – 1857

    Article  Google Scholar 

  9. Fleet D.: Disparity from local, weighted phase correlation. IEEE Conf. on SMC (1994) 48 – 56

    Google Scholar 

  10. Fleet D., Jepson, A., and Jenkin, M.: Phasebased disparity measurement. CVGIP: Image Understanding 53 (1991) 198 – 210

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van der Willigen, R.F., Lippert, J., Fleet, D.J., Wagner, H. (1997). Binocular Information Processing in the Owl. In: Jarke, M., Pasedach, K., Pohl, K. (eds) Informatik ’97 Informatik als Innovationsmotor. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60831-5_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60831-5_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63066-1

  • Online ISBN: 978-3-642-60831-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics