Informatik - Fachberichte

Band 51: G. Pfeiffer, Erzeugung interaktiver Bildverarbeitungssysteme im Dialog. X, 154 Seiten. 1982.

Band 52: Application and Theory of Petri Nets. Proceedings, Strasbourg 1980, Bad Honnef 1981. Edited by C. Girault and W. Reisig. X, 337 pages. 1982.

Band 53: Programmiersprachen und Programmentwicklung. Fachtagung der Gl, München, März 1982. Herausgegeben von H. Wössner. VIII, 237 Seiten. 1982.

Band 54: Fehlertolerierende Rechnersysteme. Gl-Fachtagung, München, März 1982. Herausgegeben von E. Nett und H. Schwärtzel. VII. 322 Seiten. 1982

Band 55: W.Kowalk, Verkehrsanalyse in endlichen Zeiträumen. VI 181 Seiten 1982

Band 56: Simulationstechnik. Proceedings, 1982. Herausgegeben von M. Goller. VIII. 544 Seiten. 1982.

Band 57: GI-12. Jahrestagung. Proceedings, 1982. Herausgegeben von J. Nehmer. IX, 732 Seiten. 1982.

Band 58: GWAI–82. 6th German Workshop on Artificial Intelligence. Bad Honnef, September 1982. Edited by W. Wahlster. VI, 246 pages. 1982.

Band 59: Künstliche Intelligenz. Frühjahrsschule Teisendorf, März 1982. Herausgegeben von W. Bibel und J. H. Siekmann. XIII, 383 Seiten. 1982.

Band 60: Kommunikation in Verteilten Systemen. Anwendungen und Betrieb. Proceedings, 1983. Herausgegeben von Sigram Schindler und Otto Spaniol. IX, 738 Seiten. 1983.

Band 61: Messung, Modellierung und Bewertung von Rechensystemen. 2. GI/NTG-Fachtagung, Stuttgart, Februar 1983. Herausgegeben von P. J. Kühn und K. M. Schulz. VII, 421 Seiten. 1983.

Band 62: Ein inhaltsadressierbares Speichersystem zur Unterstützung zeitkritischer Prozesse der Informationswiedergewinnung in Datenbanksystemen. Michael Malms. XII, 228 Seiten. 1983.

Band 63: H.Bender, Korrekte Zugriffe zu Verteilten Daten. VIII, 203 Seiten. 1983.

Band 64: F. Hoßfeld, Parallele Algorithmen. VIII, 232 Seiten. 1983.

Band 65: Geometrisches Modellieren. Proceedings, 1982. Herausgegeben von H. Nowacki und R. Gnatz. VII, 399 Seiten. 1983.

Band 66: Applications and Theory of Petri Nets. Proceedings, 1982. Edited by G. Rozenberg. VI, 315 pages. 1983.

Band 67: Data Networks with Satellites. GI/NTG Working Conference, Cologne, September 1982. Edited by J. Majus and O. Spaniol. VI. 251 pages. 1983.

Band 68: B. Kutzler, F. Lichtenberger, Bibliography on Abstract Data Types. V, 194 Seiten. 1983.

Band 69: Betrieb von DN-Systemen in der Zukunft. GI-Fachgespräch, Tübingen, März 1983. Herausgegeben von M. A. Graef. VIII, 343 Seiten. 1983.

Band 70: W.E. Fischer, Datenbanksystem für CAD-Arbeitsplätze. VII, 222 Seiten. 1983.

Band 71: First European Simulation Congress ESC 83. Proceedings, 1983. Edited by W. Ameling. XII, 653 pages. 1983.

Band 72: Sprachen für Datenbanken. Gl-Jahrestagung, Hamburg, Oktober 1983. Herausgegeben von J. W. Schmidt. VII, 237 Seiten. 1983. Band 73: GI-13. Jahrestagung, Hamburg, Oktober 1983. Proceedings. Herausgegeben von J. Kupka. VIII, 502 Seiten. 1983.

Band 74: Requirements Engineering. Arbeitstagung der GI, 1983. Herausgegeben von G. Hommel und D. Krönig. VIII, 247 Seiten. 1983

Band 75: K. R. Dittrich, Ein universelles Konzept zum flexiblen Informationsschutz in und mit Rechensystemen. VIII, 246 pages. 1983.

Band 76: GWAI-83. German Workshop on Artificial Intelligence. September 1983. Herausgegeben von B. Neumann. VI, 240 Seiten. 1983

Band 77: Programmiersprachen und Programmentwicklung. 8. Fachtagung der Gl, Zürich, März 1984. Herausgegeben von U. Ammann. VIII, 239 Seiten. 1984.

Band 78: Architektur und Betrieb von Rechensystemen. 8. GI-NTG-Fachtagung, Karlsruhe, März 1984. Herausgegeben von H. Wettstein. IX, 391 Seiten. 1984.

Band 79: Programmierumgebungen: Entwicklungswerkzeuge und Programmiersprachen. Herausgegeben von W. Sammer und W. Remmele. VIII. 236 Seiten. 1984.

Band 80: Neue Informationstechnologien und Verwaltung. Proceedings, 1983. Herausgegeben von R. Traunmüller, H. Fiedler, K. Grimmer und H. Reinermann. XI, 402 Seiten. 1984.

Band 81: Koordinaten von Informationen. Proceedings, 1983. Herausgegeben von R. Kuhlen. VI, 366 Seiten. 1984.

Band 82: A. Bode, Mikroarchitekturen und Mikroprogrammierung: Formale Beschreibung und Optimierung, 6, 7-227 Seiten. 1984.

Band 83: Software-Fehlertoleranz und -Zuverlässigkeit. Herausgegeben von F. Belli, S. Pfleger und M. Seifert. VII, 297 Seiten. 1984.

Band 84: Fehlertolerierende Rechensysteme. 2. GI/NTG/GMR-Fachtagung, Bonn 1984. Herausgegeben von K.-E. Großpietsch und M. Dal Cin. X. 433 Seiten. 1984.

Band 85: Simulationstechnik. Proceedings, 1984. Herausgegeben von F. Breitenecker und W. Kleinert. XII, 676 Seiten. 1984.

Band 86: Prozeßrechner 1984. 4. GI/GMR/KfK-Fachtagung, Karlsruhe, September 1984. Herausgegeben von H. Trauboth und A. Jaeschke. XII, 710 Seiten. 1984.

Band 87: Musterkennung 1984. Proceedings, 1984. Herausgegeben von W. Kropatsch. IX, 351 Seiten, 1984.

Band 88: GI-14. Jahrestagung. Braunschweig. Oktober 1984. Proceedings. Herausgegeben von H.-D. Ehrich. IX, 451 Seiten. 1984.

Band 89: Fachgespräche auf der 14. Gl-Jahrestagung. Braunschweig, Oktober 1984. Herausgegeben von H.-D. Ehrich. V, 267 Seiten. 1984.

Band 90: Informatik als Herausforderung an Schule und Ausbildung. GI-Fachtagung, Berlin, Oktober 1984. Herausgegeben von W. Arlt und K. Haefner. X, 416 Seiten. 1984.

Band 91: H. Stoyan, Maschinen-unabhängige Code-Erzeugung als semantikerhaltende beweisbare Programmtransformation. IV, 365 Seiten. 1984.

Band 92: Offene Multifunktionale Büroarbeitsplätze. Proceedings, 1984. Herausgegeben von F. Krückeberg, S. Schindler und O. Spaniol. VI, 335 Seiten. 1985.

Band 93: Künstliche Intelligenz. Frühjahrsschule Dassel, März 1984. Herausgegeben von C. Habel. VII, 320 Seiten. 1985.

Band 94: Datenbank-Systeme für Büro, Technik und Wirtschaft. Proceedings, 1985. Herausgegeben von A. Blaser und P. Pistor. X, 519 Seiten. 1985

Informatik-Fachberichte 132

Herausgegeben von W. Brauer im Auftrag der Gesellschaft für Informatik (GI)

Rudi Studer

Konzepte für eine verteilte wissensbasierte Softwareproduktionsumgebung

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Autor

Rudi Studer IBM Deutschland GmbH, Bereich Wissenschaft – LILOG Postfach 80 08 80, 7000 Stuttgart 80

CR Subject Classifications (1987): D.2.1, D.2.6, H.2.1, I.2.4

ISBN-13:978-3-540-17215-4 e-ISBN-13:978-3-642-71658-4

DOI: 10.1007/978-3-642-71658-4

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der Fassung vom 24. Juni 1985 zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

© by Springer-Verlag Berlin Heidelberg 1987

Vorwort

Die vorliegende Habilitationsschrift entstand zu großen Teilen während meiner früheren Tätigkeit in der Abteilung Anwendersoftware des Instituts für Informatik der Universität Stuttgart.

Mein spezieller Dank gilt sowohl Herrn Prof. Gunzenhäuser für die Übernahme der Betreuung des Habilitationsverfahrens als auch Herrn Prof. Neuhold für die langjährige Förderung meiner wissenschaftlichen Laufbahn.

Die wissenschaftlich anregende und persönlich angenehme Arbeitsumgebung in der Abteilung Anwendersoftware hat nicht unwesentlich zum Entstehen dieser Arbeit beigetragen. Hierfür sowie für zahlreiche konstruktive Beiträge danke ich meinen früheren Kolleginnen und Kollegen, vor allem Frau A. Horndasch, Herrn Dr. U. Pletat sowie Herrn Dr. B. Walter.

Schließlich danke ich der IBM Deutschland, insbesondere Herrn Dr. O. Herzog, für das freundliche Entgegenkommen, mein Habilitationsverfahren während meiner Tätigkeit bei der IBM Deutschland abschließen zu können.

Stuttgart, im März 1987

Rudi Studer

Zusammenfassung

Damit Softwareproduktionsumgebungen in größeren Softwareentwicklungsprojekten wirkungsvoll eingesetzt werden können, müssen sie
leistungsfähige Unterstützungsfunktionen anbieten, die auf die
Bedürfnisse der beteiligten Projektmitarbeiter ausgerichtet sind.
Hierzu werden in dieser Arbeit Konzepte für eine verteilte
wissensbasierte Softwareproduktionsumgebung DIKOS (Distributed
Knowledge-Based Software Engineering Environment) entwickelt,
in deren Wissensbasis alle für ein Softwareentwicklungsprojekt
relevanten Informationen verwaltet werden. Dabei werden insbesondere Aspekte der Kooperation und Kommunikation der beteiligten
Projektmitarbeiter betrachtet.

Zur Beschreibung der in der DIKOS-Wissensbasis verwalteten Objekte sowie der zur Manipulation der Objekte definierten Funktionen werden THM-Netze definiert, die Konzepte semantischer Datenmodelle mit Prädikat-Transitions-Netzen vereinigen und zusätzlich Modellierungskonzepte zur Beschreibung von Zeitaspekten beinhalten. Aufbauend auf einer exemplarischen THM-Netz-Spezifikation der DIKOS-Wissensbasis wird ein sogenanntes Benutzerinformationssystem eingeführt, das die Kooperation und Kommunikation zwischen den Projektmitarbeitern unterstützt und teilweise automatisiert. Dieses Benutzerinformationssystem wird unter Verwendung von THM-Netzen formal spezifiziert.

Abschließend wird die grundlegende Gestaltung der DIKOS-Benutzerschnittstelle beschrieben, wobei insbesondere die Dialogfunktionen des Benutzerinformationssystems betrachtet werden. Zur Beschreibung dieser Dialogfunktionen wird ein abstraktes Dialogmodell eingeführt, das die streng formale Spezifikation interaktiver Benutzerschnittstellen ermöglicht.

Inhaltsverzeichnis

1.	Einleitung		
	1.1	Vorgehensweisen bei der Softwareentwicklung	2
		1.1.1 Das Software-Life-Cycle-Modell	3
		1.1.2 Der Rapid-Prototyping-Ansatz	8
	1.2	Organisatorische Aspekte	11
		1.2.1 Makro-Organisationsformen	11
		1.2.2 Mikro-Organisationsformen	12
	1.3	Überblick über das weitere Vorgehen	18
	1.4	Vergleichende Betrachtung existierender	
		Softwareproduktionsumgebungen	20
2.	Die	Architektur von DIKOS	30
	2.1	Organisatorische Rahmenbedingungen für	
		Softwareentwicklungsprojekte	30
	2.2	Die Systemarchitektur von DIKOS	32
3.		tische und dynamische Wissensrepräsentations-	
		zepte	43
	3.1	Die Basismodellierungsansätze für THM-Netze	45
		3.1.1 Das Temporal-Hierarchic Data Model (THM)	4 5
		3.1.2 Prädikat-Transitions-Netze (PrT-Netze)	50
	3.2	Vergleichbare Modellierungsansätze	51
	3.3	Die Modellierungskonzepte von THM-Netzen	53
		3.3.1 Das Konzept der Stellenprädikate	54
		3.3.2 Die Beschriftung der Kanten	59
		3.3.3 Die Beschriftung von Transitionen	64
		3.3.4 Die Modellierung der Interaktion eines	
		Systems mit seiner Systemumgebung	73
		3.3.5 Zusätzliche Modellierungskonzepte	80
		3.3.6 Die Schaltregel für Transitionen	84
		3.3.7 Das Objekteschema eines THM-Netzes	90

		3.3.8 Modellierung von Zeitaspekten in	
		T HM-Netzen	97
		3.3.8.1 Der Zeitbegriff in THM-Netzen	97
		3.3.8.2 Der Schaltzeitpunkt einer	
		Transition	101
		3.3.8.3 Das Konzept der internen Ereignisse	107
		3.3.8.4 Die Modellierung von Zeitab-	
		hängigkeiten	114
		3.3.8.5 Die Modellierung historischer	
		Informationen	119
4.	Die	Wissensbasis von DIKOS	131
	4.1	Grundelemente einer Projektmanagementorganisation	131
	4.2	Die Spezifikationssprache SLAN-4	135
	4.3	Das Projektmodell	137
	4.4	Das Projektmanagementmodell	139
	4.5	Das Softwareproduktmodell	146
5.	Das	Benutzerinformationssystem	159
	5.1	Die Schriftstücke des Benutzerinformations-	
		systems	159
	5.2	Die Unterstützungsfunktionen des Benutzer-	
		i nformationssystems	162
		5.2.1 Die Basisfunktionen für das Erzeugen	
		und Verschicken von BIS-Botschaften	163
		5.2.2 Die Entwurfsaktivitäten der Designer	169
		5.2.3 Projektmanagementaktivitäten	186
6.	Die	Benutzerschnittstelle von DIKOS	193
	6.1	Gestaltungskonzepte für die Benutzer-	
		s chnittstelle	193
	6.2	Das abstrakte Dialogmodell	194
		6.2.1 Ansätze zur Spezifikation von Benutzer-	
		schnittstellen	195

6.2.2 Abstrakte Modelle für Dialogkonzepte	196
6.2.2.1 Das Menükonzept	196
6.2.2.2 Das Filterkonzept	198
6.2.2.3 Das Fensterkonzept	200
6.2.2.4 Der Dialogzustand	203
6.2.2.5 Die Fenstermanipulationskommandos	207
6.3 Der DIKOS-Systemzustand	215
6.3.1 Die Wissensbasiskomponente des	
Systemzustands	216
6.3.2 Der Schemagraph im Systemzustand	218
6.4 Die Benutzerschnittstelle für die Designer	223
6.4.1 Die Initialisierung des Designer-	
Arbeitsplatzes	223
6.4.2 Die Botschaftenbox des Designers	227
6.4.3 Die Arbeitspakete des Designers	228
6.4.4 Die Browsing-Funktion des Benutzer-	
i nformations sy stems	238
7. Schlußbemerkung	248
Anhang A1: Die Spezifikationssprache SLAN-4	250
Anhang A2: Ergänzende Spezifikationen für die Beschrei-	
bung der DIKOS-Benutzerschnittstelle	255
Li teratur v erzeichnis	262