Distributed Autonomous Robotic System 3

Springer

Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo Tim Lueth Rüdiger Dillmann Paolo Dario Heinz Wörn

Distributed Autonomous Robotic Systems 3

With 220 Figures and 21 Tables

Prof. Dr. Tim Lueth Charité · Humboldt-University FG Navigation and Robotics MKG · Clinic for Maxillofacial Surgery Augustenburger Platz 1, D-13353 Berlin, Germany

Prof. Dr. Rüdiger Dillmann University of Karlsruhe Institute for Process Control and Robotics Kaiserstraße 12, D-76128 Karlsruhe, Germany

Prof. Dr. Paolo Dario Scuola Superiore "S. Anna", ARTS Lab. Via Carducci 40, I-56100 Pisa, Italia

Prof. Dr. Heinz Wörn University of Karlsruhe Institute for Process Control and Robotics Kaiserstraße 12, D-76128 Karlsruhe, Germany

ISBN-13:978-3-642-72200-4 e-ISBN-13:978-3-642-72198-4 DOI: 10.1007/978-3-642-72198-4

Cip data applied for Die Deutsche Bibliothek – CIP-Einheitsaufnahme Lueth, Tim; Dillmann, Rüdiger; Wörn, Heinz: Distributed Autonomous Robotic Systems 3; with 220 figures and 21 tables / T. Lueth, R. Dillmann, H. Wörn. Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; HongKong ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo: Springer, 1998

ISBN-13:978-3-642-72200-4

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1998 Softcover reprint of the hardcover 1st edition 1998

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Typesetting: Camera-ready by editors Cover design: de'blik, Berlin Production: ProduServ GmbH Verlagsservice, Berlin SPIN: 10650336 62/3020 - 5 4 3 2 1 0 - Printed on acid-free paper

Preface

The International Conference Committee would like to extend a cordial welcome to all participants of the DARS-4 Conference. This event was made possible through the joint endeavor of the organizer, the authors, and the sponsors: the "Deutsche Forschungsgemeinschaft (DFG)" and the state Baden-Württemberg. The conference is a real international event. Contributions came from almost any corner of the world. Of course, most of them from the host country Germany, followed by Japan, Italy, USA and many others. All papers have the common goal to contribute solutions to the very demanding task of designing distributed systems to realize robust and intelligent robotic systems. Distributed autonomous units such as modules, cells, processors, agents, and robots. Combination or cooperative operation of multiple autonomous units is expected to lead to desirable features such as flexibility, fault tolerance, and efficiency.

The concept of DARS was strongly inspired by biological systems, which have characteristics of autonomous and decentralized systems, self-organizing systems, multi-agent systems, and emergent systems. DARS requires a broad area of interdisciplinary technologies related not only to robotics and computer engineering (especially distributed intelligence and artificial life), but also biology and psychology.

The DARS is the leading established conference on distributed autonomous systems. Reflecting the trends of DARS accelerated by rapid progress in computer and network technologies, the First, the Second and the Third International Symposium on Distributed Autonomous Robotic Systems (DARS '92, DARS '94 and DARS '96) took place 1992, 1994 and 1996 at the Institute of Physical and Chemical Research (RIKEN), Saitama, Japan. In 1998, the first time the event is held in Europe at the Institute for Process Control and Robotics, University of Karlsruhe. Numerous people have helped to prepare and organize this conference. The layout of the conference program and the reviewing of the papers was done by the members of the program committee, all of them deserve sincere thanks. Dr. Thomas Längle, Mr. Derk Rembold and Mr. Oliver Rogalla had the job of organizing the local arrangements and doing the correspondence; we are very grateful to them. We also would like to thank the Deutsche Forschungsgemeinschaft and the state Baden-Württemberg for the financial help and the University of Karlsruhe for providing the lecturing halls and exhibition facilities.

General Co-Chairs: Prof. Dr. Rüdiger Dillmann Prof. Dr. Paolo Dario Prof. Dr. Heinz Wörn

Program Chair: Prof. Dr. Tim Lueth

Contents

SESSION M1 Multiple Mobile Robot Systems

Iterative Transportation by Cooperative Mobile Robots in Unknown Environment	3
Sensor Coordination for Multi Mobile Robots Systems BEATRIZ L. BOADA, L. MORENO and M. A. SALICHS Universidad Carlos III, Spain	13
Robust Collision Avoidance in Multi-Robot Systems Yoshikazu Arai, Teruo Fujii, Hajime Asama, Hayato Kaetsu and Isao Endo Saitama University, Japan	23
Distributed Task Planner for a Set of Holonic Mobile Robots FERNANDO MATIA, E. MORALEDA, R. MENA and E. A. PUENTO Universidad Politecnica de Madrid, Spain	35
SESSION M2	

Distributed Systems

Distributed Mobile Robotics by the Method of Dynamic Teams	47
JAMES JENNINGS and CHRIS KIRKWOOD-WATTS Tulane University, USA	
Communication and Internetion the Medular of a Dahotic Coffeener	

Communicating and Integrating the Modules of a Robotic Software	
Application	57
JUAN A. FERNANDEZ, JAVIER GONZALEZ and ANTONIO MARTIN	
Universidad de Malaga, Spain	

VIII

A Distributed Diagnosis System for Automated Production Cells using a Multi-Agent Approach	57
A parallel control architecture for industrial robot cells	77
SESSION M3	
Self-Organization	
Self-Organized Behaviour of Distributed Autonomous MobileRobotic Systems by Pattern Formation Principles8JENS STARKE, MICHAEL SCHANZ and HERMANN HAKEN9University of Heidelberg, Germany9	89
Development of Self-Learning Vision-Based Mobile Robots for Acquiring Soccer Robots Behaviors	01
Mechanisms for self-organizing robots which reconfigure in a vertical plane	111
Experiment of Self-repairing Modular Machine 1 EIICHI YOSHIDA, SATOSHI MURATA, KOHJI TOMITA, HARUHISA KUROKAWA and SHIGERU KOKAJI MITI, Japan	.19

Session M4

Cooperation & Coordination in Robotics

Cooperative Transportation by Two 4-legged Robots with Implicit	
Communication	131
Yasumichi Aiyama, Mitsuhiro Hara, Takashi Yabuki,	
JUN OTA and TAMIO ARAI	
The University of Tokyo, Hitachi, Ltd., Japan	

Coordinate Motion Control of Multiple Autonomous Mobile Robots Based on Compliant Motion Control Kazuhiro Kosuge, Томоніго Ооѕимі, Најіме Аѕама, Тегио Fujii and Hayato Kaetsu Tohoku University, Japan	141
Cooperation Among Autonomous Robots: Unsignalised Road Intersection Problem Anthony Engwirda, Ljubo Vlacic, Makoto Kajitani and Mark Hitchings Griffith University, Australia	151
Session T1	
Sensing & Navigation for Robot Systems	
Multirobot Navigation Using Cooperative Teams Arthur C. Sanderson Rensselaer Polytechnic Insitute, USA	163
Cooperative Perception and World-Model Maintenance in Mobile Navigation Tasks ANDRZEJ KASIŃSKI and PIOTR SKRZYPCZYŃSKI Poznañ University of Technology, Poland	173
Navigation and Routemark-Detection of the Bremen Autonomous Wheelchair Тномаs Röfer and Rolf Müller University of Bremen, Germany	183
A "Barber Pole" Beacon for Mobile Robot Cooperation PAOLO BISON, GAETANO TRAINITO and STEFANO VENTURINI LADSEB-CNR, Italy	193

Session T2

Multi-Agent Systems

An Emergence Model of Sense of Values in a Competitive Social System ... 205 TAKASHI ISHIDA, HIROSHI YOKOI and YUKINORI KAKAZU Hokkaido University, Japan

A Robot-Controlling Agent Description with Finite State Machines AKIRA MORI, KAORU HIRAMATSU, FUTOSHI NAYA and NOBUYASU OSATO NTT Communication Science Laboratories, Japan	225
COMROS - A Multi-Agent Robot Architecture P. Levi, Michael Becht, Reinhard Lafrenz and Matthias Muscholl University of Stuttgart, Germany	235
Special Session S1 Human Robot Interaction & Assembly Tasks	
CoRA - An Instructable robot Kornelia Peters, Simone Strippgen and Jan-Torsten Milde University of Bielefeld, Germany	247
Reasoning about Objects, Assemblies, and Roles in On-Going Assembly Tasks BERNHARD JUNG University of Bielefeld, Germany	257
Using Distributed Sensing and Sensor Fusion for Uncalibrated Visual Manipulator Guidance CHRISTIAN SCHEERING and BERND KERSTING University of Bielefeld, Germany	267
Development of a Robot Agent for Interactive Assembly JAINWEI ZHANG, YORCK VON COLLANI and ALOIS KNOLL University of Bielefeld, Germany	277
Session T3 Autonomous Robotic Systems & Man-Machine Interfaces	
Probabilistic Modelling of a Bio-Inspired Collective Experiment with Real Robots Alcherio Martinoli and F. Mondada Swiss Federal Institute of Technology, Switzerland	289
Real-time Path Adaptation for Sweeping by Autonomous Mobile Robots DAISUKE KURABAYASHI, TAMIO ARAI, KANJI IWASE, JUN OTA, HAJIME ASAMA and ISAO ENDO University of Tokyo, Japan	299

х

Method for Controlling a Group of Robots by an Operator Kazuya Ohkawa, Takanori Shibata and Kazuo Tanie University of Tsukuba, Japan	309
Graphical User Interface for Collaborative System of Human and Mobile Robots with Sensors TATSUYA ISHIKAWA, KUNIAKI KAWABATA, YOSHINORI UEDA, HAJIME ASAMA and ISAO ENDO Toyo University, Japan	319
Special Session S2 RoboCup	
RoboCube a "universal" "special purpose" Hardware for the RoboCup small robots league ANDREAS BIRK, HOLGER KENN and THOMAS WALLE University of Brussel, Belgium	331
Emergent Cooperation in a Virtual Soccer Environment MARKUS HANNEBAUER, JAN WENDLER, PASCAL GUGENBERGER and HANS-DIETER BURKHARD Humboldt-University of Berlin, Germany	341
Implicit Coordination in a Multi-Agent System using a Behavior-based Approach F. Montesello, A. D'Angelo, C. Ferrari and E. Pagello Padua University, Italy	351
Modeling Environment and Tasks for Cooperative Team Play K. YOKOTA, K. OZAKI, A. MATSUMOTO, K. KAWABATA, H. KAETSU and H. ASAMA Utsunomiya University, Japan	361

Session W1 Distributed Planning & Learning

XII

Planning and Control System of a flexible Mulitrobot-based	
Microassembly Station	383
Jörg Seyfried, S. Fatikow, A. Mardanov, R. Munassypov	
and D. BLACHMAN	
University of Karlsruhe, Germany	
Distributing Programs in Multi-Agent Systems HOLGER FRIEDRICH, OLIVER ROGALLA and RÜDIGER DILLMANN University of Karlsruhe, Germany	393
An Analysis of Collective Property caused by Structure Reconfiguration Томочикі Када and Тозніо Fukuda Nagoya University, Japan	405

Author Index	415
--------------	-----