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Abstract. Kernel-based learning methods provide their solutions as ex-
pansions in terms of a kernel. We consider the problem of reducing the
computational complexity of evaluating these expansions by approxi-
mating them using fewer terms. As a by-product, we point out a connec-
tion between clustering and approximation in reproducing kernel Hilbert
spaces generated by a particular class of kernels.

1 Introduction

Recent years have seen a surge in the interest in learning methods based on
Mercer kernels, i.e. functions k(x,y) which for all data sets {xi,...,x,} ¢ RV
give rise to positive matrices K;; := k(x;,x;) [10]. Using k instead of a dot
product in RN corresponds to mapping the data into a possibly high-dimensional
space F by a (usually nonlinear) map & : RV — F, and taking the dot product
there, i.e. [2]

k(x,y) = (@(x) - B(y)). (1)

Any linear algorithm which can be carried out in terms of dot products can be
made nonlinear by substituting an a priori chosen kernel. Examples thereof are
the Gaussian kernel k(x,y) = exp(—||x — y[|*/(20?)) and the polynomial kernel
k(x,y) = (x-y)? (which corresponds to a dot product in a feature space spanned
by all products of order d in the original input features [2,11]). We can think
of & as a map & : x — k(x,.) into a Hilbert space F' of functions ), a;k(x;,.)
with a dot product satisfying (k(x,.), k(y,.))r = k(x,y) [11]. By virtue of this
property, F' is called a reproducing kernel Hilbert space (e.g. [10]).

Let us mention two examples of algorithms using Mercer kernels:

Support Vector (SV) classifiers [14] construct a maximum margin hyperplane
in F. In input space, this corresponds to a nonlinear decision boundary of the
form

L
F(x) = sgn (2 Yik(x,xi) + b) , (2)

i=1

where the x; are the training examples. Those with 7; # 0 are called Support



Vectors; in many applications, most of the ;, which are found by solving a
quadratic program, turn out to be 0. Excellent classification accuracies in both
OCR and object recognition have been obtained using SV machines [11]. A
generalization to the case of regression estimation, leading to similar function
expansion, exists [14].

Kernel Principal Component Analysis [12] carries out a linear PCA in the
feature space F. The extracted features take the nonlinear form

14

fk(x) :Z'szk(xivx)a (3)

i=1

where, up to a normalization, the 7{“ are the components of the k-th Eigenvector
of the matrix (k(x;,x;)):;-

In both techniques, there is a price that we pay for the nonlinearity: since
vectors in F' are only given implicitly by expansions in terms of images of training
examples under @, we need to evaluate the kernel function many times. In the
NIST benchmark of 60000 handwritten digits, SV machines are more accurate
than any other single classifier [11], however, they are inferior to neural nets in
run-time classification speed [5]. In applications where the latter is an issue, it
is thus desirable to come up with acceleration methods [4,5,9].

The present, paper gives an analysis for the case of the Gaussian kernel, which
has proven to perform very well in applications [13], and proposes and tests an
iteration procedure for computing fast approximations of kernel expansions.

2 The Reduced Set (RS) Method

Given a vector ¥ € F, expanded in images of input patterns y; € RY,
Ny
V= Z%@(Yi)a (4)
i=1
with v; € R,y; € R, one can try to approximate it by [4]
N
v =Y 4oz, (5)
i=1

with N, < Ny, 3; € R,z; € RY. To this end, one can minimize [4]

N, N. Ny N.
12 —'* = >~ vivik(yiyi) + Y BiBik(zi,z) =2 > 7:Bik(yi,2). (6)
i,j=1 i,j=1 i=1 j=1

The crucial point is that even if @ is not given explicitely, (6) can be computed
(and minimized) in terms of the kernel. Consider first the case N, = 1, i.e.
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(z) Fig. 1. Given a vector ¥ € F', we try to approximate

it by a multiple of a vector &¢(z) in the image of

input space (R") under the nonlinear map & by

finding z such that the projection distance of ¢ onto
F Span(®(z)) is minimized.

V' = BP(z). We observe that rather than minimizing (6), we can minimize the
distance between ¥ and the orthogonal projection of ¥ onto Span(®(z)) (Fig. 1),

v - 9(z))

H (7 - 9(z))
(8(z) - &(z))

@@ 5(a)) @)

2
o(z) -0 = | -

To this end, we maximize

(8)

which can be expressed in terms of the kernel. The maximization of (8) over z is
preferable to the one of (6) over z and 3, since it comprises a lower-dimensional
problem, and since z and § have different scaling behaviour. Once the maxi-
mum of (8) is found, it is extended to the minimum of (6) by setting (cf. (7))
B = (¥ -&(z))/(P(z) -P(z)). The function (8) can either be minimized using stan-
dard techniques (as in [4]), or, for particular choices of kernels, using fixed-point
iteration methods, as shown in the next section.

3 Clustering as Approximation in Feature Space

For kernels which satify k(z,z) = 1 for all z € R" (e.g. Gaussian kernels), (8)

reduces to
(@ - 8(2))>. 9)

For the extremum, we have 0 = V,(¥ - &(z))? = 2(¥ - &(z))V,(¥ - &(z)). To
evaluate the gradient in terms of k, we substitute (4) to get the sufficient con-
dition 0 = Zfi”l viVzk(yi,z). For k(x;,z) = k(||x; — z||?) (e.g. Gaussians, or
(||x; — 2]|* +1)¢ for ¢ = —1,—1/2), we obtain 0 = Ei\iyl vik'(|ly: — 2zl|*) (yi — 2),
leading to N
_ i vk (llyi — =)y
Z2="N, o (10)
2i—1 Yik'(llyi — 2l?)

For the Gaussian kernel k(x;,z) = exp(—||x; — z||*/(20?)) we thus arrive at

2Ny exp(=lys — 2)2/(202))y;
z = N, ’ (11)
SN viexp(—|lyi — 2|2/ (202))




and devise an iteration

N,
Zni1 = Zizyl yi exp(—|ly; — Zn||2/(202))Yi (12)
n - N, .

>oiz viexp(=lly: — znl?>/(20?))

The denominator equals (¥ - &(zy)) and thus is nonzero in a neighbourhood of
the extremum of (9), unless the extremum itself is zero. The latter only occurs
if the projection of ¥ on the linear span of @(RN) is zero, in which case it is
pointless to try to approximate ¥. Numerical instabilities related to (¥ - &(z))
being small can thus be approached by restarting the iteration with different
starting values.

Interestingly, (12) can be interpreted in the context of clustering (e.g. [3]).
It resembles an EM iteration for the determination of the center of a single
Gaussian cluster trying to capture as many of the y; with positive -; as possible,
and simultaneously avoids those y; with negative v;. For SV classifiers, the sign
of the 7; equals the label of the pattern y;. It is this sign which distinguishes (12)
from plain clustering or parametric density estimation. The occurence of negative
signs is related to the fact that we are not trying to estimate a parametric density
but the difference between two densities (modulo normalization constants).

To see this, we define the sets pos = {i : v; > 0} and neg = {i : 7 < 0},
and the shorthands ppos(z) = 3 ,, viexp(=|ly: — 2l|/(20%)) and ppe,y(z) =
> neg il €xp(=lyi — 2|/ (207)). The target (9) then reads (ppos(2) — Pneg(2))°,
i.e. we are trying to find a point z where the difference between the (unnormal-
ized) “probabilities” for the two classes is maximal, and estimate the approxi-
mation to (4) by a Gaussian centered at z. Moreover, note that we can rewrite
S pa(®) )

Ppos (Z) — Pneg (Z) bos DPneg (Z) _ppos(z) s

. —_ A 2 /(952 .
where _ ZPOS/neg viexp(—|ly: — z°/(207))y: (14)

y os/ne - -
PO e S s /mes Vi €XD(—Ilyi — 2l[2/(207))

4 Multi-Term RBF Approximations

So far, we have dealt with approximations ¥' = 3&(z). Now suppose we want
to approximate a vector

£

by an expansion of the type (5) with N, > 1. To this end, we iterate [4] by
Vi1 = ¥ — Bm®(zn,). Here, z, denotes the z found for ¥,,, obtained by
iterating (12). To apply (12), ¥,, needs to be utilized in its representation in
terms of mapped input images,[

Uy = Zai¢(xi) - Z_ Bi®P(zi), (16)



i.e. we need to set Ny =+m—1, (v1,-..,7n,) = (Q1,..., a0, =B1,-. ., —fBm-1),
and (y1,-..,¥nN,) = (X1, ., X¢, 21, .-, Zp—1)-

The coefficient 8, = 8(z,,) could be computed as (¥ - &(z))/(P(z) - D(z)).
However, if the &(z1), ..., ®(z,,) are not orthogonal in F', then the best approx-
imation of ¥; in their Span is not obtained by computing orthogonal projec-
tions onto each direction. Instead, we need to compute the optimal coefficients

B = (B1,...,0m) anew in each step. To this end, we evaluate the derivative of
the distance in F, 55-[1¥1 — Y12, 8i®(z:)||> = —2@(z) (91 — 112, Bi(2:)), and
set it to 0. Substituting (15) (with & = (a1, ..., a)) and using matrix notation,

Kf = (®(zi) - 9(z;)) and K := (&(z;) - P(x;)), this leads to K*"a = K*3,
hence!

B=(K*)"'K*a. (17)

The iteration is stopped after N, steps, either specified in advance, or by moni-
toring when ||@,, 41| (i.e. || — > 1%, B:;P(z;)||) falls below a specified threshold.
The solution vector takes the form (5).

5 Approximating Several Vectors Simultaneously

In many applications, we actually would like to approximate more than just one
vector in feature space, and we are interested in keeping the total number of
approximation vectors small. For instance, in SV digit recognition, one typically
trains 10 binary classifiers, and combines the responses. Previous studies have
dealt with this by estimating 10 approximations separately [4,5], which need
not be optimal. Even more pronounced is the case of Kernel PCA [12]. There,
a network extracting n features computes n projections on vectors in feature
space. Approximating each one separately would most likely be wasteful. Ap-
proximating the vectors ¥',...,¥™ simultaneously results in a network where
the computationally expensive first layer is shared by the different sub-networks.

First note that in most cases, already the above algorithm can be used in
this respect. Often, the terms in the approximation of one vector will not be
orthogonal to the other vectors, and can thus be used, essentially for free, to
decrease the discrepancy also for the other vectors, by computing corresponding
values of the 3; as in (17).

More principled is the following approch: as a straightforward generalization
of (7), we minimize the sum of the projection distances,

n k. $(g N - k. $(z))2
> | 2”@ 7 :,;O'w” o ey) 09

L If the discrepancy ¥+ has not yet reached zero, then K* will be invertible.
If K* does not have full rank, one can use the Pseudoinverse, or select the solution
which has the largest number of zero components.



which amounts to maximizing Y",'_, (¥* - &(z))?/(®(z) - #(z)). For the Gaussian
RBF (radial basis function) kernel, the gradient takes the form 0 = V,(¥* -

k

B(z))? = 2(F* - B(2))V,(F* - B(z)). For Tk = S~ 1k (yk), we thus obtain

Nk
S k=1 i 7 exp(=llyf —zl*/(20°)) exp(=lly} —=lI*/(20%))y}
= L .
Y1 i v exp(=lyt — )1/ (20%)) exp(=|ly} — z[*/(20%))

(19)

6 Experiments

In our experiments on the USPS handwritten digit database (e.g. [11]) of 7291
training patterns and 2007 test patterns (size 16 x 16), we approximated the SV
expansions (2) of ten binary classifiers, each trained to separate one digit from
the rest. We used the Gaussian kernel k(x,y) = exp(—||x — y|[*/128) (cf. [13]),
and the approximation technique described in Sec. 4.

Table 1 shows classification error results for approximations using varying
numbers of RS vectors. For large numbers, the accuracy of the original system
can be approached closely. The original SV system had 254 SVs per classifier.
To get a speedup by a factor of 10, we have to use the system with 25 RS
vectors (RS-25), in which case the classification accuracy drops moderately from
4.4% to 5.1%, which is still competitive with convolutional neural networks on

Table 1. Top: numbers of SVs for the original SV RBF system. Bottom: numbers of
test errors for each binary recognizer, and test error rates for 10-class classification.
First row: original SV system, with 254 SVs on average; following rows: systems with
varying numbers of RS (approximation) vectors (RS-n stands for n vectors) per binary
recognizer (optimal threshold re-computed on the training set), computed by iterat-
ing one-term approximations, separately for each recognizer. Last two rows: with a
subsequent global gradient descent, the results can be further improved (see text).

digit| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9laverage
#SVs|219| 92|316|309|288|340|213|206|304|250| 254

of 1] 2[ 3] 4] 5] 6] 7] 8] 9] 10-class
SV-254| 16] 13| 30| 17| 32| 22| 11| 12] 26| 17| 4.4%
RS-10| 26| 13] 45| 49| 35| 54| 22] 24| 39| 24| 7.1%
RS-15| 17| 16| 43| 50| 49| 37| 14| 18| 45| 35| 6.4%
RS-20| 27| 11| 38| 30| 35| 43| 12| 16| 30| 25| 5.6%
RS-25| 21| 12| 38| 32| 31| 22| 12| 18| 33| 28| 5.1%
RS-50| 18| 10| 33| 28| 32| 23| 12| 15| 35| 27| 5.0%
RS-100| 14| 13| 26| 22| 30| 26| 11| 14| 28| 23| 4.8%
RS-150| 13| 14| 28| 32| 27| 24| 12| 14| 29| 26| 4.7%
RS-250| 12| 13| 26| 26| 32| 25| 11| 14| 26| 24| 4.6%
RS2-25| 14| 14| 31| 22| 30| 23| 11| 14| 26| 17| 4.7%

RS2°M-25| 16| 13| 32| 19| 31| 26| 11| 15| 25| 18| 5.0%
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Fig. 2. Complete display of RS-20, with coefficients (Top: recognizer of digit 0,. .., bot-
tom: digit 9). Note that positive coefficients (roughly) correspond to positive examples.

that data base [7]. Moreover, we can further improve this result by adding the
second phase of the traditional RS algorithm, where a global gradient descent
is performed in the space of all (z;, ;) [4,5] (computationally more expensive
than the first phase by about two orders of magnitude): this led to an error rate
of 4.7%. For the considered kernel, this is slightly better than the traditional
RS method, which yielded 5.0% (for polynomial kernels, the latter method led
to 4.3% at the same speedup [4]). Figure 2 shows the RS-20 vectors of the 10
binary classifiers. As an aside, note that unlike the approach of [4], our algorithm
produces images which do look meaningful (i.e. digit-like).

7 Discussion

We have proposed an approach for approximating kernel expansions, and shown
experimentally that it did speed up a Gaussian RBF SV machine. Note that in
the Gaussian RBF case, the approximation can never be as good as the original:
no approximation with N, < N, will lead to ¥,, = 0, since the kernel matrix
K;; = (k(y:,y;)) has full rank [8]. Otherwise, ezact reductions can be obtained,
as noted in [11], and, independently, [6]: if Ka = 0, then we can express one col-
umn of K, and hence one vector &(y;), as a linear combination of the other ones;
e.g. by picking the i™%* with largest |o;|: (yima=) = — Zi#mum a;P(y;)/jmas.

As in [5], good results are obtained even though the objective function does
not decrease to zero (in our experiments, it was reduced by a factor of 2 to
20 in the first phase, depending on how many RS vectors were computed; the
global gradient descent yielded another factor 2 — 3). We conjecture that this
is due to the following: in classification, we are not interested in ||& — ¥'||, but



in [ |sgn(2£i-"1 vik(x,y:) +b) — sgn(z;\rzz1 Bik(x,2;) + b)|dP(x), where P is the
underlying probability distribution of the patterns (cf. [1]). This is consistent
with the fact that the performance of a RS SV classifier can be improved by
re-computing an optimal threshold b (which we have done in our experiments).

The previous RS method [4,5] can be used for any SV kernel; the new one
is limited to k(x,y) = k(||x — y||*). However, it led to slightly better results,
interpretable RS images, and an interesting connection between clustering and
approximation in feature spaces. It appears intriguing to pursue the question
whether this connection could be exploited to form more general types of ap-
proximations of SV and kernel PCA expansions by making use of Gaussians
of variable widths. Moreover, it should be worthwhile to carry out experiments
testing simultaneous approximation approaches as the one proposed in Sec. 5.
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