Skip to main content

Qualitative Modelle in Wissensbasierten Systemen

  • Conference paper
Künstliche Intelligenz

Part of the book series: Informatik-Fachberichte ((2252,volume 159))

  • 136 Accesses

Abstrakt

Diese Arbeit gibt einen Überblick über die Verwendung von qualitativen Modellen des Gegenstandsbereichs in wissensba-.sierten Systemen. Die Arbeit besteht aus zwei Teilen. Indem ersten Teil werden einige Systeme diskutiert (CADUCEUS, ABEL, long’s System, Davis’ System), die verschiedene Typen von kausalen Modellen benutzen.

In dem zweiten Teil werden die wichtigsten Aspekte der entwickelten Modellierungsmethoden dargestellt. Die zwei wesentlichen Strukturierungsmethoden des objektorientierten und des prozeβorientierten Ansatzes werden gegenübergestellt. ConstraintTechniken als häufig verwendete Implementierungsmethode warden ausführlich behandelt. Neben Darstellungsmitteln für zeitliche und kausale Beziehungen wird die Einführung von Objektzuständen beschrieben. Anschlieβend wird die Unterscheidung zwischen stetigen und digitalen Variablen motiviert, und die Notwendigkeit einer Hierarchie von Modellbildungen erläutert. In einem ausführlichen Ausblick wird aufgezeigt, was bisher noch nicht erreicht wurde.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Artificial Intelligence (1984), Vol.24, Numbers 1–3, Special Volume on Qualitative Reasoning about Physical Systems

    Google Scholar 

  2. Allen, James F.: Maintaining Knowledge about Temporal Intervals, CACM, Vol.26, No.11, 832–843

    Article  Google Scholar 

  3. Blum,Norbert : Fehlererkennung in kombinatorischen Schaltkreisen, SFB 124-B2, Bericht 10/1985, Fachbereich 10 der Universität des Saarlandes, Saarbrücken

    Google Scholar 

  4. Charniak, Eugene; McDermott, Drew : Introduction to Artificial Intelligence, Addison Wesley

    Google Scholar 

  5. Davis, Randall: Expert Systems: Where are we? and where do we go from here?, AI-Magazine, Spring 1982, pp. 3–22

    Google Scholar 

  6. Davis, Randall: Diagnostic Reasoning Based on Structure and Behavior, in [AI-Journal 84], pp.347–410

    Google Scholar 

  7. de Kleer, Johan How Circuits Work, [AI-Journal 84], pp. 205–280

    Google Scholar 

  8. de Kleer, Johan: An Assumption-Based TMS, draft version, to appear in Artificial Intelligence, 1986

    Google Scholar 

  9. de Kleer, Johan; Bobrow, Daniel G. : Qualitative Reasoning with Higher-Order Derivatives, in Proc. AAAI-84, pp. 86–91

    Google Scholar 

  10. de Kleer, Johan; Brown, John S. Assumptions and Ambiguities in Mechanistic Mental Models, in D. Gentner/ A. L. Stevens (Eds.): Mental Models, Lawrence Erlbaum Associates

    Google Scholar 

  11. de Kleer, Johan; Brown, John S. : A Qualitative Physics Based on Confluences, in [AI-Journal 84], pp 7–83

    Google Scholar 

  12. de Kleer, Johan; Williams, Brian C.: Diagnosing Multiple Faults, draft of September 85, Intelligent Systems Lab., XEROX Palo Alto Research Center

    Google Scholar 

  13. Descotte, Y; Latombe, J. C.: Making Compromises among Antagonist Constraints in a Planner, Artificial Intelligence, Vol.27, No.2, pp. 183–217

    Google Scholar 

  14. Dilger, Werner: Expertensysteme für technische Anwendungen, Manuskript zur gteichnamigen Vorlesung im Wintersemester 1985/86 an der Universität Kaiserslautern

    Google Scholar 

  15. Dilger, Werner; Kippe, Jorg: COMODEL, a Language for the Representation of Technical Knowledge, Proc. 9th International Conference on Artificial Intelligence, Los Angeles, pp. 353–358

    Google Scholar 

  16. Doyle, Jon A Truth Maintenance System, Artificial Intelligence Vol 12 (1979), pp. 231–272

    Google Scholar 

  17. Forbus, Kenneth D.: Qualitative Process Theory, in [At-Journal 84], pp. 85–168

    Google Scholar 

  18. Genesereth, Michael R. : The Use of Design Descriptions in Automated Diagnosis, in [AI-Journal 84], pp. 411–436

    Google Scholar 

  19. Gentner, Dedre; Stevens, A. L. (eds) : Mental Models, Lawrence Erlbaum Associates

    Google Scholar 

  20. Hayes, Patrick J. The Naive Physics Manifesto, in Michie, D. (ed), Expert Systems in the Microelectronic Age,Edinburgh university Press, pp. 242–270

    Google Scholar 

  21. Hayes, Patrick J. The Second Naive Physics Manifesto, in Hobbs, Jerry R.; Moore, Robert C. (eds), Formal Theories of the Commonsense World, Ablex Series in Artificial Intelligence, pp. 1–36

    Google Scholar 

  22. Hayes, Patrick J. Naive Physics I : Ontology for Liquids, ebenda, pp.71–107

    Google Scholar 

  23. Iwasaki, Yumi; Simon, Herbert A.: Causality in Device Behavior, Carnegie-Mellon University, Computer Science Department, CMU-CS-85–118

    Google Scholar 

  24. Klaeren, Herbert A. :Algebraische che gpez~rikationei,eine Elnführung, sprinter-verla

    Google Scholar 

  25. [Kuipers 84~ ~uipers, ~~njamin Commonse~se keasoning about Causality: Deriving Behavior from Structure, in [AI-Journal 84], pp. 169–203

    Google Scholar 

  26. Long, W. J.; Naimi, S.; Criscitiello, M. G.; Kurzrok, S.: Reasoning about Therapy from a Physiological Model, MIT Laboratory for Computer Science, submitted to MEDINFO 86

    Google Scholar 

  27. Mason, Samual J.: Feedback Theory - Further Properties of Signal Graphs, Proc. of the IRE, 1956, 44: 920–926

    Google Scholar 

  28. McCarthy. John : Programs with Common Sense, in Minsky, Marvin (ed), Semantic Information Processing, MIT press, pp.403–418. Diese Arbeit enthält Material, das bereits in den Jahren 1958 und 1963 erstmalig veröffentlicht wurde

    Google Scholar 

  29. McCarthy, John; Hayes, Patrick J.: Some Philosophical Problems from the Standpoint of Artificial Intelligence, in Meltzer, B.; Michie, D. (eds), Machine Intelligence 4, Edinburgh University Press

    Google Scholar 

  30. McDermott, Drew: A Temporal Logic for Reasoning about Processes and Plans, Cognitive Science 6, pp. 101–155

    Google Scholar 

  31. Patil, Ramesh S.: Causal Representation of Patient Illness for Electrolyte and Acid-Base Diagnosis, MIT/LCS/TR-267, Massachusetts Institute of TechnoLogy

    Google Scholar 

  32. PopLe, H.: Heuristic Methods for Imposing Structure on Ill-structured Problems, in Szolovits, P. (ed.), Artificial IntelLigente in Medicine, AAAS Selected Symposium 51

    Google Scholar 

  33. Raulefs, Peter : Foundations of Expert Systems for ConceptuaL Design in Mechanical Engineering, Memo SEKI-84–08, Fachbereich Informatik, Universität Kaiserslautern

    Google Scholar 

  34. Reinfrank, Michael Th. : An Introduction to Non-Monotonic Reasoning, Memo SEKI-85–02, Fachbereich Informatik, Universität Kaiserslautern

    Google Scholar 

  35. Reinfrank, Michael Th.: SCENELAB, Scene Labelling by a Society of Agents. A Distributed Constraint Propagation System., Memo SEKI-85–06, Fachbereich Informatik, Universität Kaiserslautern

    Google Scholar 

  36. Rieger, Chuck; Grinberg, Milt : The Declarative Representation and Procedural Simulation of Causality in Physical Mechanisms, Proc. 5th International Joint Conference on Artificial Intelligence, pp.250–256

    Google Scholar 

  37. Roth, J. P.: Diagnosis of Automata Failures: A Calculus and a Method, IBM Research Development 10, pp.278–291

    Google Scholar 

  38. Schwind, Camilla B.: Temporal Logic in Artificial Intelligence, in Proc. GWAI-84, 8th German Workshop on Artificial Intelligence, Wingst/Stade

    Google Scholar 

  39. Shirley, M.; Davis, R.: Digital Test Generation from Hierarchical Models and Symptom Information, Proc. IEEE International Conference on Computer Design

    Google Scholar 

  40. Silverberg, Brad A., An Overview of the SRI Hierar chical Development Methodology, Horst Hünke (ed), Software Engineering Environments, North Holland

    Google Scholar 

  41. Stallman, R. M.; Sussmanl G. J.: Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis, Artificial Intelligence Vol.9 1 pp.135–196

    Google Scholar 

  42. Sussman l Gerald; Steele l Guy Lewis Jr.: CONSTRAINTS – a Language for Expressing ALmost-Hierarchical Descriptions, Artificial Intelligence 14, pp. 1–40

    Google Scholar 

  43. Steele, Guy Lewis Jr.: The Definition and Implementation of a Computer Programming Language Based on Constraints, MIT AI-Lab., AI-TR-595

    Google Scholar 

  44. Voss, Hans: Representing and Analyzing Time and Causality in HIQUAL Models, Memo SEKI-85–07, Fachbereich Informatik, Universität Kaiserslautern, erscheint 1986 in Proc. 9th German Workshop on Artificial Intelligence, Springer-Verlag

    Google Scholar 

  45. Voss, Angi; Voss, Hans: A Uniform View on Local Constraint Propagation Methods, draft

    Google Scholar 

  46. Waltz, David: Understanding Line Drawings of Scenes with Shadows, in ‘The Psychology of Computer Vision’, P. H. Winston (ed.), McGraw-Hill Book Company 1975 1 pp. 19–91

    Google Scholar 

  47. Williams, Brian C.: Qualitative Analysis of MOS Circuits, in [AI-Journal 84], pp. 281–346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Puppe, F., Voß, H. (1988). Qualitative Modelle in Wissensbasierten Systemen. In: Christaller, T., Hein, HW., Richter, M.M. (eds) Künstliche Intelligenz. Informatik-Fachberichte, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73405-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73405-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18903-9

  • Online ISBN: 978-3-642-73405-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics