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1. INTRODUCTION 

A system in which one server visits a set of queues, in some order, is commonly referred to as a pol­
ling system. A large number of queueing theoretic studies about polling systems has been published. 
The vast majority of these studies considers polling systems in which the server serves the queues in a 
strictly cyclic order. Several service strategies at the queues have been investigated and implemented 
in actual computer-communication networks; these strategies range from exhaustive (a queue is served 
until it is empty) to I-limited (when the queue is non-empty, the server serves exactly one customer). 

The main performance measures of cyclic polling systems are the mean waiting times at the various 
queues. When all queues have an exhaustive service strategy, the exact mean waiting times at the 
queues can be determined by solving a system of linear equations. For most other service strategies 
exact mean waiting times are only known in special cases; see the surveys of Takagi [1986,1988) for 
detailed results and further references. 

Recently some generalizations have been co!).sidered, which encompass a much larger class of cyclic 
polling systems. One generalization of purely cyclic polling is a polling system with a service order 
table, i.e., a list of stations which the server must successively visit. Stations can be given higher 
priority by listing them more often in the table. See Boxma et al. [1988]. The polling table [1,2, ... ,N] 
gives the purely cyclic case, and [1,2,1,3, ... ,l,N] represents the important star polling scheme. 

Another generalization concerns polling systems with a random polling scheme. In a random pol­
ling scheme, the polling order is not fixed but determined by some random mechanism. In a recent 
study, Kleinrock and Levy [1988] analyzed the behaviour of a random polling system in which the 
next station polled will be the jth station with probability p1, independent of the present station. A 
large PJ corresponds to a high priority for the jth station. Kleinrock and Levy [ 1988] consider three 
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different systems. In each one, all stations have the same service strategy: exhaustive, gated or 1-
limited. For the exhaustive and gated strategies, they give the individual mean response times (waiting 
times plus service times) as the solution of a system of linear equations. For the I-limited strategy 
they determine the mean response time for the special case of a completely symmetric system. They 
state that their results can be used to predict the expected delay in an exhaustive slotted ALOHA sys­
tem; the random polling mechanism represents the random scheme according to which it is decided 
which station will transmit during the next slot. 

In this study we also consider a polling system with probabilistic server routing. In our case the 
next station polled will be determined by a discrete time parameter Markov chain. We shall some­
times speak of Markovian polling. This includes cyclic polling and the purely random polling scheme 
of Kleinrock and Levy as special cases. The service strategies at the various queues may be different 
(exhaustive at one queue, I-limited at the next one, etc.). 

The switchover times of the server between queues are assumed to be nonnegligible. Hence there is 
no work conservation. However, the work conservation principle can be extended to a work decompo­
sition principle (Boxma and Groenendijk [1987], Boxma [1989]). This work decomposition principle 
states that the amount of work in a polling system with switchover times can be decomposed into two 
independent parts, viz., (i) the amount of work in the same polling system but without switchover 
times and (ii) the amount of work in the system at some epoch covered by a switching interval. 

Boxma and Groene}Ydijk [ 1987] have used the work decomposition principle for cyclic polling sys­
tems to derive a pseudoconservation law for such systems, viz., an exact expression for a weighted sum 
of the mean waiting times at the queues. These results yield new insight into the behaviour of polling 
systems and can be used to obtain approximations for the individual mean waiting times. In the 
present study a pseudoconservation law will be derived for Markovian polling. 

This study has been motivated by various considerations. Firstly, Markovian polling provides a 
theoretically interesting .generalization of cyclic polling, and therefore we have considered it 
worthwhile to try and generalize the work decomposition principle and pseudoconservation law of 
Boxma and Groenendijk [1987] to the case of Markovian polling. Secondly, Markovian polling 
appears to have some interesting practical applications. While cyclic polling has been successfully 
used to model systems where a central controller polls many stations, Markovian polling m~y be used 
to model distributed systems (Kleinrock and Levy [1988]). As an example, Levy [1984] uses a random 
polling model to predict the mean delay in a slotted Aloha system. We believe that a second example 
may be found in the Orwell ring protocol (Mitrani, Adams and Falconer [1986]). In this protocol, c 
slots of equal length rotate around a ring. Each slot can accommodate one packet. A packet in a slot 
filled by a station Q; is addressed to station Qi with a certain probability. Qi empties the slot and 
passes it on empty to the next downstream station. This is a major departure from other slotted ring 
protocols, where a slot can be released only by the station which filled it. For the case of c = 1 slot, it 
seems an interesting possibility to use a Markovian polling model to approximate the performance of 
the Orwell ring protocol. Such a model captures the stochastic character of the order of service of the 
stations, although it ignores the fact that the server transition probabilities in reality depend on 
whether or not a packet is waiting for transmission (whether or not a queue is non-empty). 

A final reason for studying Markovian polling (and polling tables, for that matter) is that they open 
possibilities for optimization by considering various choices of the transition probabilities (and of the 
polling table). As a first step towards obtaining insight into this matter, we have compared the per­
formance of polling systems with either cyclic or star polling and the performance of Markovian pol­
ling systems with the same server visit frequencies. 

The paper is organized as follows. In section 2 a model description is presented. Section 3 contains 
some preliminaries concerning the mean visit times of the server at the various queues, and a brief 
discussion of ergodicity conditions. Section 4 gives the work decomposition for Markovian polling 
systems. Section 5 is devoted to the main result of this study, the derivation of the pseudoconserva­
tion law. The determination of the mean interdeparture times of the server between queues will be 
central in that analysis. It will be shown that a system of N2 equations in the N 2 unknown mean 
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interdeparture times of the server, can be related to a system of N 2 equations in the N 2 unknown 
mean entrance times of the underlying reversed Markov chain (in fact, the system can be decomposed 
into N sets of N linear equations). For some special cases, explicit expressions for the mean inter­
departure times are derived. 

2. MODEL DESCRIPTION , 
In this paper we consider a (continuous time) queueing system with N stations (queues), Qi, ... ,QN, 
where each station has an infinite buffer capacity to store waiting messages (customers). 
Message arrival process. 
Customers arrive at all queues according to independent Poisson processes. The arrival intensity at Q; 
is A;, i = l, ... ,N. The total arrival rate is given by: 

N 
A:= ~A.;. 

i =I 

Customers who arrive at Q; are called iype-i customers. 
Service process. 
The service times of type-i customers are independent, identically distributed stochastic variables. 
Their distribution B;(.) has first moment /3; and second moment /3~2l. The offered traffic, P;, at Q; is 
defined as: 

P; : = A.;/3;, i = l, ... ,N, 

and the total offered traffic,y, as: 

N 

p:= ~Pi· 
i=l 

Polling strategy. 
The N stations are served by a single server S who visits the stations according to a Markovian pol­
ling scheme.· The next station to be polled is determined according to an irreducible positive 
recurrent discrete time parameter Markov chain M = {d,,, n =0,1, ... } with state space I= {1, ... ,N}. 
With { d,, = i} we denote the event that the nth station polled after t = 0 is station Q;, i E J. 

We assume that the Markov chain M has stationary one-step transition probabilities, i.e., the condi­
tional probabilities Pr{ d.,,+ 1 = Jld,, = i }, i,j El, are independent of n. 
Define: 

Pij := Pr{d,,+1 =Jid,,=i}, i,jEI, n =0,1, ... , (2.1) 

q; := lim,,_.,, 00 Pr{dn=i}, iEl, n =0,1, .... (2.2) 

For the waiting time analysis in §ection_5 it will tum out to be essential to consider the time reversed 
process of the Markov chain M, M = {dn, n =O, I, ... }, obtained from M by reversing the time param­
eter. The following theorem is proved in Kelly [1979), pp. 28,29: 

THEOREM 2.1 
If M is a stationary discrete time parameter Markov chain with state space I, one-step trq_nsition probabil­
ities pij, i,j El, and with equilibrium distribution { q1, j EI}, then the reversed process M is a stationary 
discrete time parameter Markov chain with state space I, one-step transition probabilities 
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- ·- - _.-_. _!JL .. PiJ . - Pr{ dn + 1 -Jldn -1} - PJi• l,J El, q; 

and with the same equilibrium distribution { q1, j EI}. 

In the sequel M will be called the reversed Markov chain. 

Service strategy. 

(2.3) 

For the service strategies at the stations there are various possibilities, which differ in the number of 
customers who may be served in a queue during a visit of S to that queue. Assume that S visits Q;. If 
Q; is not empty S acts as follows, depending on the service strategy at Q;: 

I Exhaustive service (E): S serves type-i customers until Q; is empty; 
H Gated service (G): S serves exactly those type-i customers present upon his arrival at Q; (a gate 

closes upon his arrival); 
III I-Limited service (1-L): S serves exactly one type-i customer. 

In the sequel we will allow mixed service strategies (e.g., exhaustive at Q 1, I-limited at Q2 and Q4 , 
gated at Q3, etc.). / 
After the visit period at Q; (which has length zero when Q; is empty) S switches with probability PiJ 
to Q1, i,j El. 

REMARK 2.1 
We have restricted ourselves to the above-mentioned three main disciplines in polling systems. We 
could have included other-strategies; in fact we show in Section 5 how I-limited service in Markovian 
polling leads to the Bernoulli service discipline ( cf. Keilson and Servi [ 1986]) in cyclic polling. 

Switching process. 
A switchover time is needed to switch from Q; to Q1, i,j EI. The switchover times of the server 
between Q; and Q1 are independent, identically distributed stochastic variables with mean siJ and 
second moment s~J>. 

The message arrival processes, the service demand processes and the switching processes are 
assumed to be mutually independent. 

3. PRELIMINARY RESULTS 
First some definitions. We define the visit time of the server at Q;, V;, as: 

Norn 

V; : = the time between the arrival of the server at Q; 

and its subsequent departure from Q;, i El. 

(3.1) 

If p;; >0 and if, moreover, the switchover time from Q; to Q; is zero with positive probability, then a 
visit to Q; may immediately be followed by another such visit. 

We also define 

l!n : = the time between the departure of the server from the (n-l)th station polled 
and its departure from the nth station polled after t = 0 ; 
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u,, is the sum of the switchover time from the (n - l)th station polled after t =O to the nth station, 
and the visit time to the latter station. The process SM = {(dn,u,,), n =O, 1, ... }, with 
M = { dn, n = 0, 1, ... } the discrete time parameter Markov chain described in Section 2, is a semi­
Markov process (cf. Cinlar [1975), Chapter 10, Section 5). Note that when the (n - l)th station polled 
after t = 0 is Q; and the nth station polled after t = 0 is Qj: 

We also have to introduce the server's interdeparture time between Q; and Qj, Tij, i,j El: 

Tij : = the time between a departure of S from Qj and its last previous departure from Q;. (3.2) 

So during the time span Tij, for f=fai, S has not returned to Q; but there may have been several visits 
to Qj. 
From a work balancing argument it follows that 

EV; = p;ET;;, i El. (3.3) 

Another balancing argl)rtlent yields: 

q·EV· p· 
-'--' - -' . 'El Ev - ' l,j ' 
qj j Pj 

(3.4) 

(cf. Cinlar [1975], p. 341), i.e. the ratio of the average amount of time S spends at Q; and the average 
amount of time S spends at Qj equals the ratio of the average traffic loads at Q; and Qj. 
Combining (3.3) and (3.4) gives: 

(3.5) 

hence q;ET;;, i El, is a constant. 

Ergodicity conditions , 
A necessary condition for ergodicity of the system is p< 1. When the service strategy at each queue is 
either exhaustive or gated this condition can be shown to be also sufficient. Without proof we 
observe that a necessary condition for ergodicity for a I-limited station Q; is: 

'A;ET;; < 1. (3.6) 

Indeed, A;ET;; equals the mean number of arrivals to Q; between two successive visits (and potential 
services) of the server at Q;. For the mixed service strategies that we allow, condition (3.6) should be 
added to the 'stability condition p< 1 for those queues at which we have a I-limited service strategy. 
In the sequel it will be assumed that the ergodicity conditions are fulfilled, and that the system is in 
equilibrium. 

4. WORIC DECOMPOSITION 

In this section we state that the amount of work in the Markovian polling system with switchover 
times can be decomposed into two independent terms, one of which is the amount of work in the 
same system but without switchover times. Before we give the work decomposition theorem we intro­
duce the notion of 'corresponding MIG/I-system'. The corresponding MIG/I-system indicates a 
single-server system with exactly the same arrival processes, service demand processes and scheduling 
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disciplines (i.e. a procedure for deciding which customer, if any, should be in service at any time) as 
the Markovian polling system under consideration, but without switchover times. The principle of 
work conservation implies that the amount of work in the latter system is independent of the service 
discipline: Markovian polling and FCFS service for all customers, irrespective of the queue they join, 
give rise to identical amounts of work at all times. 
Define: 

V MP : = steady-state amount of work in the Markovian polling system, 
V : = steady-state amount of work in the corresponding MIG/I-system, 
Y : = steady-state amount of work in the Markovian polling system at some epoch covered by a 
switching interval. 

We relate these quantities in the next theorem. 

THEOREM 4.1 
Consider a single-server multi-queue Markovian polling system as described in Section 2. Suppose the sys­
tem is ergodic and stationary. Then the steady-state amount of work in this system, V Afp, is distributed as 
the sum of the steady-state amount of work in the corresponding MI GI] -system, V, and the steady-state 
amount of work at smye epoch covered by a switching interval, Y: 

D 
VMP = v + Y, (4.1) 

D 
where = stands for equality in distribution. Furthermore, V and Y are independent. 

PROOF 

See Boxma [ 1989). 

5. THE PSEUDOCONSERVATION LAW 

In this section we use Theorem 4.1 to derive an expression for a weighted sum of the mean waiting 
times. As a consequence of Theorem 4.1: 

EVMP = EV + EY, (5.1) 

and hence from M/G/l theory, cf. Cohen [1982]: 

N 

2: A.J1F> 
- i=l 

EVMP - 2(1-p) + EY. (5.2) 

On the other hand, when X; denotes the number of waiting type-i customers and Wi the waiting time 
of a type-i customer in the Markovian polling system with switchover times: 

N N f3Fl N I N 
EVMP = 2: /3iEX; + 2: P;~ = 2: P;EW; + 22: A;/3Fl, 

i = I i = I f31 i = I i = I 
(5.3) 

the first equality following from the fact that service is non-preemptive, and the second equality fol­
lowing from Little's formula. Combination of (5.2) and (5.3) yields: 

(5.4) 
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To obtain an expression for this weighted sum of mean waiting times it remains to determine EY, the 
mean amount of work at some epoch covered by a switching interval. Denote by YiJ the amount of 
work in the Markovian polling system at some epoch covered by a switchover from Q; to Q1, i,j El. 

EY can be expressed as a weighted sum of all EYiJ, averaging over the switchover durations and the 
frequencies with which transitions between queues occur: ' 

N N 
EY = (l/O')~ q; ~piJsiJEYiJ, (5.5) 

i=I j=I 

with 

N N 
(J : = ~ q; ~ PiJSij, (5.6) 

i=l j=I 

the average mean switchover time. Note that in the purely cyclic case (p;,; + 1 =1, i El): 
N 

a=(l/ N)~ s;,;+i. with ~~= 1 s;,;+ 1 the mean total switchover time in one cycle. 
i=I 

~t remains to determin~YiJ, i,j El. EYiJ is composed of three terms, only one of which depends on 

1: 

EMP> : = the mean amount of work in Q; at a departure epoch of S from Q;, 

EMF> : = the mean amount of work in Qj, ... ,Q;- 1,Q;+ 1, ... ,QN, at a departure epoch of S from Q;, 

s<~> 
p iS.. : = the mean amount of work that arrived in the system during the past part of the switching 

I) 

interval (from Q; to Q1) under consideration. 

So we can write: 

5(2) 

EYij = EM}il + EMF) + p iS .. . 
lj 

(5.7) 

It will turn out that EMP> is the only term in the righthand side of (5.7) that depends on the service 
strategy at Q;. It can only be sRecified when the service strategy at Q; is known. 

We shall first consider EMI >,the mean amount of work in Q 1, •• .,Q1- 1,Q;+i, ... ,QN at a departure 
epoch of the server from Q1• Qk (k=l=i) can make two contributions to EMF>: 

the mean amount of work left behind in Qk by S at his last departure from Qk> 
the mean amount of work that has arrived in Qk during Tk;, the server's interdeparture time 
between Qk and Q; (cf. (3.2)). 

We obtain the following relation: 

EMF) = ~ EM~I) + ~ PkETk;, i El. (5.8) 
k'f=i k'f=i 

Substitution of (5.8) in (5.7) gives: 

N (I s(~) 
EYiJ = ~EMk> + ~ PkETk; + p iS .. , i,j El. 

k =I k'/=i '1 

(5.9) 

EM~1 ) and ETk; still have to be determined. The EM~1 ) are derived below for an exhaustive, gated or 
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l ~limited service strategy at Qk: 

(i) Qk has an exhaustive service strategy: Qk is left behind empty by S, so 

EM~1 ) = 0. (5.10) 

(ii) Qk has a gated service strategy: EM~1 > equals Pk times the mean visit time of S at Qk> hence (cf. 
(3.3)), 

(5.11) 

(iii) Qk has a !-limited service strategy: a similar derivation as in Boxma and Groenendijk [1987] 
leads to, 

(J\kETkk is the fraction of visits of S to Qk that result in a service, and Pk(EWk+l3k) equals the mean 
amount of work that has arrived during the sojourn time of a departing customer). 
Substituting (5.10), ... ,(5.12) in (5.9) gives: 

s<~> 
EYij = ~ PlcETkk + ~ Pk°AkETkkEWk + ~ PkETk; + p iS .. , i,JEI, (5.13) 

kEg,1-1 kEl-1 k~i 1) 

with g and 1-/ denoting the group of queues with gated and I-limited service strategies respectively. 
It now remains to determine ETk;, k,i EI. We first introduce the event 

Bji : = 'the last visit before a visit of S to Q; was to Q/. 
For all k,i EI: 

N 
ETk; = ~ E{Tk;!Bji}Pr{Bji}· 

j=I 
(5.14) 

Determination of ETk; requires looking backwards in time (cf. Theorem 2.1). We can write for all 
i,JEI: 

the one-step transition probabilities of th~ reversed Markov chain M. It easily follows that: 

E{Tk;!Bji} = E{TkJ} + sji + EV; ifj=/=k, 

E {Tk;jBji} = ski + EV; if j ~k. 

Substitution of (5.15) and (5.16) into (5.14) gives, for k,i El: 

ETk; = ~ [ETkJ + sji + EV;]pij +[ski + EV;]p;k· 
J# 

If we define 

N 

f (i) : = EV,· + "" s p~ ~ Ji ij• 
j=I 

iEI, 

(5.15) 

(5.16) 

(5.17) 

(5.18) 



9 

then we can rewrite (5.17) as: 

ETki = f (i) + ~ ETkj Pij• i,k El. (5.19) 
f=Fk 

Clearly, the set of N 2 linear equations (5.19) can be decomposed into N sets of N linear equations. In 
the next lemma it will be shown that the N 2 unknown mean interdeparture times ETk;, k,i El can ~e 
expressed in the N 2 mean entrance times between queues in the underlying revt:,rsed Markov chain M. 
The mean entrance time between Q; and QI, vij, in the reversed Markov chain Mis defined as: 

v;j : = E { # steps required for the first entrance into Q; starting from Qj }, i,j El, (5.20) 

(cf. Cohen [1982), p. 33). 
Note that from the theory of Markov chains and from Theorem 2.1 we have, 

- l 
Vu = -, iEI. 

q; 

We now formulate: 

LEMMA 5.1 
For all i,k El: 

PROOF 

/ 

- -
Denote by S the server for the reversed M¥kov chain M. We start with two observatj_ons: 

(5.21) 

(5.22) 

(i) ETk; is in the reversed Markov chain M the average time between an arrival of S at Q; and his 
first subsequent arrival at Qk. _ _ 
(ii) f (i) is in the reversed Markov chain M the average time between an arrival of S at Qi and his 
arrival at the next station to be visited after Q; (possibly again Q;). 

Using these observations we can write for i,k El: 

ETk; = f (i) + ~ f (/) E{ # times S visits Q1 before it visits Qk starting from Q; }. 
l=Fk 

Further on we can write for i,k,l El and k=f=l (see Chung [1967), p.46): 

with 

oo -(n) 
E { # times S visits Q1 before it Vi.sits Qk starting from Q;} = ~ kPil , 

n=I 

-(n) - - - . 
kPil = Pr{ dn =l, dm=f=k, m = l, ... ,n - lido =z }, 

(5.23) 

i.e., the probability of going from Q; to Q1 inn steps without visiting Qk. Using Corollary 2 on page 
65 of Chung [1967] we find: 

n=I 
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So we obtain: 

E { # times S visits Q1 before it visits Qk starting from Q;} = 
[v;k+vk1-vuVv11, i,k,IEI, k=Fl. 

Combining (5.23) and (5.24) gives relation (5.22). 

REMARK 5.1 

(5.24) 

An alternative way to prove Equation (5.22) is by means of matrix manipulations. The following steps 
are required: 
(1) Denote by T = (ET11 , ••• ,ET1N,ET2i. ... ,ETNN)' the N 2-dimensional column vector of the 
unknown mean interdeparture times. Then we can write (5.19) in the following form: 

T = AT+b, 

with obvious definitions of the N 2 by N 2 matrix A and the N 2-dimensional vector b. 
(2) Because the eigenvalues of A are all less than one (Seneta [1981 ]), T can be written as: 

- - 00 - 00 -
T = [I-A f 1b = [~ A<n>Jb = [/ + ~ A<n>Jb. 

n =O n =I 

(3) It appears that ~00= 1 A(n) is a blockdiagonal matrix with N blocks of size NXN. Denoting the 
(i,/)th element of the~ block by Ck(i,l), it can be shown that for i,/E{l, ... ,N}, k E{l, ... ,N}, 

Ck(i,I) = 0, I =k, 
. oo -(n) 

Ck(1,l) = ~ kPil , l=/=-k. 
n=I 

Combination of steps 2 and 3 now yields (5.22). 

So, to determine ETk;, k,i f§I we can determine the mean entrance times, v;b i,k El, of the under­
lying reversed Markov chain M. It is known that these are the solution of 

V;k = l + ~ p;jVjb i,k El; 
tf'k 

cf. Cohen [1982). 

(5.25) 

From a theoretic point of view it is interesting to make the link between interdeparture times of S, 
and entrance times of the underlying reversed Markov chain (the more so because the semi-Markov 
process and its underlying (reversed) Markov chain arise so naturally in the present queueing model). 
From a numerical point of view it constitutes no real advantage to solve the set of equations (5.25) 
instead of the set of equations (5.19). 

Fork =i Lemma 5.1 yields, with v11 = I I q1, I El, 

N 
q;ET;; = ~q1 f (/), i El. (5.26) 

/=I 

This demonstrates the fact that q;ET;; does not depend on i (cf. (3.5)). We now determine 
C : = q;ET;;, successively using (5.26), (5.18), (2.3), (5.6) and (3.3): 

N N N N 
C = ~q1J (/) = ~ qi ~ PtmSm/ + ~ q1EV1 = 

/=I l=I m=I /=I 

N N N N 
~ qm ~ Pm1sm1 + ~ q1EV1 = a + ~ P1q1ET11 = a + pC. 

m=l /=I /=I /=I 



Hence 

so 

C1 c = -1-, -p 

l C1 
ET;;= --1-, 

q; .-p 

EV; = .l_ p;o . 
q; 1-p 

Substituting (5.28) in (5.13) gives: 

with ETk; as in Lemma 5.1. 
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(5.27) 

(5.28) 

•. (5.29) 

(5.30) 

Combining (5.4), (5.5) and (5.30) gives our main result which is formulated in Theorem 5.1 below. 
As before, denote by g and 1-/ the group of queues with gated and I-limited service strategies, and 
further denote by e the group of queues with exhaustive service stiategies . . 
THEOREM 5.1 i 
Consider an ergodic and stationary single-server multi-queue Markovian polling system with mixed service 
strategies as described in Section 2. Then: 

"Ak o 
~ PkEWk + ~ Pk[l---1-JEWk = 

kEe,g kEl-1 qk -p 
(5.31) 

N 
~ A;/JP> 

i=l 

p 2(1-p) 

with ET ki as in Lemma 5.1. 

REMARK 5.2 
In the purely cyclic case, p;,;+ 1 =1, i El, (5.31) reduces to (3.22) in Boxma and Groenendijk [1987]. 
Note that (a/ qk) = no in (5.31) corresponds to the total mean switchover time, s, in (3.22) of that 
publication, cf. below (5.6). 

REMARK 5.3 
Theorem 5.1 can be generalized to the case of a batch arrival process with correlated sizes of the 
batches simultaneously arriving at the various queues ( cf. the cyclic polling model of Levy and Sidi 
[1988]). 

REMARK 5.4 
Kleinrock and Levy [1988] restrict themselves to the special case that p;1 = p1 (random polling) and 
siJ = s;, s~> = sP> for all i,jEI. In this case qk =Pk> kEI, and (5.17) reduces to: 
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ETk; = - 0 - [~ - .!!!:.__ + -1-], k,iEI. 
1-p q; qk qk 

To interpret this formula, note that 

I a 
ETk; - EV; + EVk = --- = ETkk, k,iEI; 

qk I-p 

(5.32) 

(5.33) 

and observe that in this case Mis reversible, so that ETki - EV; + EVk also equals the mean time 
between a departure from Q; (or Qk, as PiJ =p1 for all i) and the first subsequent departure from Qk. 
Formula (5.31) reduces to: 

A.k (J 

~ PkEWk + ~ pdl---1-JEWk = 
kEe,g kEl-1 Pk -p 

(5.34) 

N 
~ A.JJF) 

i=l + __ a_ ""-"' P~ a N P~ a N Pk 
p ""'---~-+-~--

2(l-p) 1-p kEg,1-1 Pk l-p k=I Pk l-p k=I Pk 

~ + L~ (2) ""4 P;S; 2 ""4 p; s, . 
i=l O'i=l 

Kleinrock and Levy, for the cases of exhaustive service and of gated service at all queues, give the 
individual mean waiting times as the solution of a set of O(N2 ) linear equations. For the completely 
symmetric case, they determine the mean waiting times (which now are all the same) explicitly for the 
exhaustive, gated and I-limited strategies. It can easily be shown that (5.34) leads to the expression 
found by Kleinrock and Levy for this completely symmetric case. 

REMARK 5.5 
At this stage we'd like to point at the relative simplicity of the pseudoconservation law formulated in 
Theorem 5.1. In the general case the righthand side of (5.31) can be evaluated after N sets of N 
linear equations have been solved; in special cases such as purely random polling, the ETk; can be 
determined explicitly in a straightforward manner. This should be contrasted with the fact that, apart 
from two-queue models and completely symmetric models, the individual mean waiting times are only 
known for purely random polling with exhaustive or gated service at all queues. For the more general 
Markovian polling, the individual mean waiting times might again be determined for these two service 
disciplines, following the approach of Kleinrock and Levy [1988]; but this seems to require the solu­
tion of a set of O(N3) linear equations. 

REMARK 5.6 
It is interesting to compare cyclic polling and.random polling with equal visit probabilities (piJ=l IN) 
for all queues. We restrict ourselves to the case that, for both models, all queues have exactly the 
same traffic characteristics, while all switchover times are independent, identically distributed s.v. with 
mean r. With an obvious notation, the difference between the mean workloads in both models is (cf. 
(5.1)): 

(5.35) 

Comparison of the pseudoconservation laws for cyclic polling (Boxma and Groenendijk [ 1987)) and 
random polling (formula (5.34)) yields: 

_ _N-1......!.L 
EV MP EV cycl - 2 l - p . (5.36) 
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Not surprisingly, the random character of the server visits in random polling leads to a higher mean 
workload than for cyclic polling. 

When the service strategy at all queues is the same, then (5.36) leads to the following results of 
Kleinrock and Levy [1988]: for exhaustive and gated service, with an obvious notation, 

N-1 r 
EWMP - EWcycl = -2- 1-p; 

for I-limited service, 

N-1 r 
EWMP - EWcycl = 2 ----,-. 

l-p-NA1r 

REMARK 5.7 

(5.37) 

(5.38) 

We have also compared V MP with V 510,, the amount of work in a single-server J\[-queue system (N;:.2) 
with star polling, i.e. server visits according to the pollib.g table [1,2, 1,3, ... , l,N]. We have assumed 
that 

Q1 receives exhaustive service, whereas Q2, ••• , QN receive 1-limited service (in both models); 
both models have t~ same traffic characteristics; 
all switchover times are equal to the constant r; 

- piJ=pj, withp1 =;, P2 = · · · =pN= 1/(2(N-l)). 

Comparison of EV MP and EVstar amounts to comparison of EY in both models. Using the evalua­
tions of EY in the present paper and in Boxma et al. [ 1988], it can be shown that 

EV MP -;;:. EVs10r; 

in fact, if p2 = · · · =pN, then 

It should be noted that this difference is 
roughly linearly increasing in N; 
tending to zero for r-i-0; 

(5.39) 

(5.40) 

dependent on An and /3n only via their product Pn; 
equal to +rp for p=p1 (Q2, ••• , QN receive no traffic), a result which is easily explained by not-

ing that the comparison in this case amounts to a comparison of two M/G/l queues with vaca­
tions. 

Another special case of the Markovian polling model introduced in this paper is the cyclic service 
model with a Bernoulli schedule, as introduced by Keilson and Servi [1986]. This schedule operates 
as follows. If there are still customers present in Q; after a service completion in this queue, the 
server decides with probability I -p; to serve the next customer at Q;, and with probability p; he 
switches to Q;+I· He also takes the latter action when there are no more customers present in Q;. 

Tedijanto [1988] has derived a pseudoconservation law for the cyclic service system with a Bernoulli 
schedule. Below we show how this pseudoconservation law follows as a special case of the pseu­
doconservation law in Theorem 5.1. Assume that all stations have a !-limited service strategy, and 
take, for all i E /, 

PiJ = 1-p; il j =i, 
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Pu = p; 

PiJ = 0 

S;; = 0, 

S;,;+I = S;, 

ifj=i+l, 

else ; 

s~~) + 1 = sF). 

It should be noted that the server pays a geometrically distributed number of consecutive visits, with 
mean number lip;, to Q;; even when Q; has become empty, the server may still return a number of 
times, but this does not take time because s;; =O. It follows that the server spends on the average 
EV m I Pm at Qm before he switches to Qm + 1• A work balancing argument now implies that 

EVm D 
-- = Pm 1 , m El, ' 

Pm -p 

with 

D:=fs( 
i=I 

For this special case we also have: 

f(i) = p;[s;-1 + P;_ID }, iE/, 
~ -p 

q; = J_ I ( f -1-), i El, 
Pi m=I Pm 

N l 
<J =DI(~ -), 

m=l Pm 

and (cf. (5.25)) 

_ ; -1 I 
Vi} = ~ -, i,j El, 

k=j Pk 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

(note that this is a cyclic sum; for j>i -1, viJ is the sum of llp1, ... , l/ PN· 11p 1, ••• , l/ p; _ 1). 

Using the above formulas, (5.22) reduces to: 

; EVm ;-1 . 
ETk; = ~ -- + ~ Sm, k,i El. 

m=k+I Pm m=k 
(5.46) 

Indeed, in the cyclic service model with a Bernoulli schedule, ETk; equals the mean amount of time 
the server spends at Qk+ 1,. • .,Q;, plus the sum of the mean switchover times between Qk and Q;. 

Using (5.41),. . .,(5.46), we obtain the pseudoconservation law for the cyclic service model with a Ber­
noulli schedule at all queues: 

N D 
~ Pk[l -.\kpk-1-]EWk = 

k=I -p 
(5.47) 

N 
~ A.JJF) 

i =I 

p 2(1-p) 
D N 2 n<2J D 2 N 2 

+ -1- ~ PkPk + p 2D + 2(1- )[p - -~ p;], 
-p k=I p 1=1 
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with D(2) the second moment of the sum of the N switchover times between Q 1 and Q2 , .•• , QN and 

Q1. 

Expression (5.47) is the same as (3.6.6) in Tedijanto [1988]. Note that (5.47) reduces to the pseu­

doconservation law for cyclic polling with exhaustive (respectively I-limited) service at all queues if all 

Pk =O (respectively all Pk= 1). 
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