Skip to main content

A Resolution Calculus Extended by Equivalence

  • Conference paper

Part of the book series: Informatik-Fachberichte ((2252,volume 216))

Abstract

In this paper a resolution calculus with logical equivalence is presented. It is based on the fact that equivalence of literals behaves very similar to equality of terms. We show that the well known methods of equality reasoning, like paramodulation and demodulation, apply equally well to logical equivalence. Using equivalence is one way to transform an equality free representation of problems, for which resolution often performs very poorly, into a more suited equality-like notation that allows the use of the appropriate inference rules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachmair, L. amp; Dershowitz, N. (1987). Inference Rules for Rewrite-Based First Order Theorem Proving. In: Proc. of 2nd Conference on Logic in Computer Science.

    Google Scholar 

  • Chang, C.L. amp; Lee, R.C.T. (1973). Symbolic Logic and Mechanical Theorem Proving. Academic Press, New York.

    MATH  Google Scholar 

  • Hsiang, J. (1982). Topics in Automated Theorem Proving and Program Generation. Ph.D. Thesis, Dep. of Comp. Sc., University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Hsiang, J. (1985). Refutational Theorem Proving using Term-rewriting Systems. Artificial Intelligence 25, 255–300.

    Google Scholar 

  • Kaplan, S. (1984). Fair Conditional Term Rewriting Systems: Unification, Termination, and Confluence. LRI, Orsay.

    Google Scholar 

  • Kapur, D. amp; Narendran, P. (1985). An Equational Approach to Theorem Proving in First-Order Predicate Calculus. 84CRD322, General Electric Corp. Research and Development Report, Schenectady, N.Y.

    Google Scholar 

  • Markgraf, K. (1984). The Markgraf Karl Refutation Procedure. SEKI-Memo MK-84-01, Universität Kaiserslautern.

    Google Scholar 

  • Müller, J. amp; Socher, R. (1988). Topics in Completion Theorem Proving. SEKI-Report SR-88-13, Universität Kaiserslautern.

    Google Scholar 

  • Müller, J. amp; Socher, R. (1989). RE-Resolution. SEKI-Report SR-89-??, Universität Kaiserslautern.

    Google Scholar 

  • Müller, J. (1987). Theopogles - A Theorem Prover Based on First-Order Polynomials and a Special Knuth-Bendix Procedure. In: K. Morik (Ed.): Proc. of the 1 lthe German Workshop on Artificial Intelligence, Geseke. Springer IFB 152,241–250.

    Google Scholar 

  • Noll, H. (1980). A Note on Resolution: How to Get Rid of Factoring Without Loosing Completeness. In: W. Bibel & R. Kowalski (Eds): Proc. of 5th Conf. on Automated Deduction. Springer LNCS 87,50–63.

    Google Scholar 

  • Pelletier, FJ. (1986). Seventy-five Problems for Testing Automatic Theorem Provers. Journal of Automated Reasoning. 2 /2, 191–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabinov, A. (1988). A Restriction of Factoring in Binary Resolution. In: E. Lusk amp; R. Overbeek (Eds.): Proceedings of the 9th International Conference on Automated Deduction. Argonne, Illinois, U.S.A. Springer LNCS 310, 582–591.

    Google Scholar 

  • Robinson, G. amp; Wos, L. (1969). Paramodulation and theorem-proving in first-order theories with equality. In: B. Meitzer, amp; D. Michie, (Eds.): Machine Intelligence 4. Edinburgh, 135–150.

    Google Scholar 

  • Robinson, J.A. (1965). Automated Deduction with Hyper-Resolution. Intern. Journal of Comp. Mathematics, 1,227 – 234.

    Google Scholar 

  • Rusinowitch, M. (1987). Démonstration automatique par des techniques de réécriture. Thèse de doctorat d’etat. Nancy.

    Google Scholar 

  • Wos, L. (1988). Automated Reasoning: 33 Basic Research Problems. Prentice Hall, Englewood Cliffs.

    MATH  Google Scholar 

  • Wos, L. et.al. (1967). The Concept of Demodulation in Theorem Proving. Journal of the ACM, 14,698–709.

    Google Scholar 

  • Zhang, H. (1984). Reveur 4: Etude et Mise en Œuvre de la Réécriture Conditionelle. Thèse de Doctorat de cycle. Université de Nancy I.

    Google Scholar 

  • Zhang, H. amp; Kapur, D. (1988). First-Order Theorem Proving Using Conditional Rewrite Rules. In: E. Lusk amp; R. Overbeek (Eds.): Proceedings of the 9th International Conference on Automated Deduction. Argonne, Illinois, U.S.A. Springer LNCS 310, 1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, J., Socher-Ambrosius, R. (1989). A Resolution Calculus Extended by Equivalence. In: Metzing, D. (eds) GWAI-89 13th German Workshop on Artificial Intelligence. Informatik-Fachberichte, vol 216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75100-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75100-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51743-6

  • Online ISBN: 978-3-642-75100-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics