
Centrum voor Wiskunde en lnformatica
Centn~ for Mathematics and Computer Science

A.AM. Kuijk

Temporal issues of animate response

Computer Science/Department of Interactive Systems Report CS-R8960 December

The Cen1re for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 ,
1 946, as a nonprofit inst itution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­

ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Abstract

Temporal Issues of Animate Response

A.A.M. Kuijk

Centre for Mathematics and Computer Science (CW/)
Department of Interactive Systems

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
Email: fons@cwi.nl

Due to increased capacities of personal workstations, graphical user interfaces
become capable to offer natural human computer interaction. This results in animate
response, i.e. natural transitions from one state into another. It is recognized that for
optimal efficiency, such animate response should be "tuned" to the time frame of the
user. It is not sufficient to speed up the response as much as possible: the temporal
characteristics of the response should be based on human perceptual capabilities.
This paper is a survey of notions related to animate response. Throughout the paper
we will touch subjects which need consideration and/or further investigation.

CR Categories and Subject Descriptors:

1.3.3 [Computer Graphics]: Picture/Image Generation -- Display algorithms;

1.3.5 [Computer Graphics]: Computational Geometry and Object Modelling -- Curve,
surface, solid, and object representations;

1.3.6 [Computer Graphics]: Methodology and Techniques -- Interaction techniques

Key Words & Phrases:

continuous motion, temporal anti-aliasing, implicit animation, direct manipulation,
hierarchical data structures, progressive refinement.

Introduction
User interfaces are becoming more and more sophisticated due to the tempestuous evolution of
both hard- and software. Sophisticated user interfaces support natural interaction and take into
account features of human visual perception. This results in animate response, that is response
where changes as invoked by the user are visualized by a smooth, natural transition from one
state into another.

Motion plays an important role in numerous aspects of human vision. Eyes are in a constant
state of movement to generate stimuli needed to see anything at all. Relative motion of objects is
essential for three-dimensional perception: a change of viewing position generates motion
parallax. The human mind is trained to interpret this motion parallax as a measure of distance.
A person observing a three-dimensional object which he holds in his hand will almost
automatically rotate it to generate relative motion and thereby get the best impression of the
three-dimensional structure. The human vision system uses relative motion as a basis of
grouping: organizing objects that belong together. By exploiting such acquired perceptual
capabilities of the viewer, animate response can improve human computer interaction.

AePort CS-R8960
Centre for Mathematics and Computer Science 1
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Why should we be concerned about temporal aspects of animate response, isn't it sufficient to
simply let the system respond as fast as it can? If nowadays workstations are not fast enough,
future systems will be, so why bother about it? The answer to this is that systems might never
be fast enough: workstations may increase in capacity, but on the other hand applications
become increasingly more complex. More importantly however, to let an interactive
environment respond as fast as it can will almost never result in an adequate response. The
system will quite often be to slow, but occasionally it may even be to fast.
We should continue to be concerned about temporal aspects of animate response: the system
must be "tuned" to the time frame of the user. This tuning should aim at optimal interaction, on
the one hand taking into account the limited temporal resolution of the display system and the
human vision system, on the other hand taking into account ergonomic aspects: how to help the
user anticipate to a new situation. The following two examples of such tuning may be
illustrative. They can be found in a type of user interface commonly known as the desktop
metaphor, a simple two dimensional environment.
Not all systems are capable of supporting real-time dragging of a window with all of its
content. An elegant solution found is to leave the window with its content where it is and let the
user drag a simplified representation of the window: its boundary rectangle. Due to this
simplification, the system is able to give appropriate feedback to the user.
The visible action upon closing a window, i.e. clearing the screen, can be done very fast. Here,
a system can take more time and smoothly lead the user to the new situation by an impl icit
animation: a shrinking boundary rectangle moving towards a disk or folder icon. During this
animation, both the system and the user have time to update their administration.
For animate response in three-dimensional dynamic environments more sophisticated
techniques are needed, but basically they are of the same nature: adapt to the users time frame.
In this paper we will address some issues related to this.
The outline of the paper is the following. First we will be more specific on what we consider to
be animate response. Next, we will visit an area in computer graphics which is closely related,
the area of computer animation. Computer animation is an area where the knowledge of how to
adapt to the human vision system is essential. Following this we will d iscuss aspects of
visualization of motion given the limitations of a real-time environment. From this, we will see
that hierarchical data structures are needed so as to be able to trade time against quality.
Therefore, several aspects of hierarchical data structures are discussed. The last section will
mention some issues which need further investigation.

Animate Response
As mentioned in the introduction, animate response, is the visual response of a system to
changes invoked by the user. It is characterized by a smooth, natural transition from one state
into another. It is useful to distinguish between the following two situations: implicit animation;
the user interface automatically generates intermediate states and direct manipulation: the user
generates intermediate states by manipulating objects or entities of objects . These two
categories differ in who is in control over the transition phase, a difference which has direct
implications on temporal aspects of the interaction.

Implicit animation
In the case of implicit animation, explicit specification of a new state implicitly specifies the
transition. Although the user interface may allow the user to specify certain transition
parameters, the transition itself is autonomously generated by the system. As. the visualization
is not part of a time restricted feedback loop, the temporal requirements are somewhat liberal.
Implicit animation is a sophisticated type of response, which can be employed by traditional
command language interaction: objects are manipulated by means of explicit commands, issued
for example by typing or by menu selection. Implicit animation merely helps to "guide the eye",
to make the transition appear more natural. It reduces the computational effort of the interaction
process, evidently not on the side of the system but on the side of the user. For this, some

2

intelligence on the system side of the interface is required. Based on the type and amount of the
change, the system should be able to determine how to best visualize the transition for the user.
Implicit animation does not have to be restricted to generate a natural transition between two
"key-frames", one may also think of more abstract transitions as in the example of closing a
window as mentioned in the introduction. In the first state the user sees a window, in the final
state the user sees an icon and the abstract transition is used to inform the user which icon
relates to the window. Characteristic of abstract transitions is that an abstract relation between
two by nature different entities can be visualized.
As an example of non-abstract implicit animation, think of a user looking at an image of a
complex molecule. It would help him understand the whereabouts of all the atoms of that
molecule if the command "rotate 90 degrees around the z-axes" does not result in a mere
presentation of the new situation, but would result in a simulation type of response: an
animated sequence of a slowly rotating molecule. Even if this rotation is visualized using a
simple wireframe image, the relative motion of the individual atoms during this rotation would
give the viewer the depth perception needed to fully comprehend the three-dimensional
structure. It may be clear that this simulation type of response needs temporal tuning: it should
not take too much time else the user will be annoyed, on the other hand it should not be too fast
else the user will miss essential information.
As mentioned before, setting of transition parameters may allow the user to specify the speed,
image quality or other aspects of the transition. Sophisticated systems would automatically
adapt to the user's skill and preferences. It should be noted that although the temporal
requirements may be somewhat liberal, too long transition times would distract rather than
guide the user.

Direct Manipulation
Direct manipulation is a very natural and powerful interaction mechanism: the user is able to
manipulate a visible representation of a virtual model as if it is a real object which can be seen
and touched. The user can manipulate entities of that model by means of input devices like a
mouse, a light pen, a trackball or more exotic devices such as a data-glove. These
manipulations have to be visua1ized as a part of the feedback loop between input device,
visualized entity, user and again input device. The user will handle the input device based on
what he sees. As a result the time restrictions are severe.
Direct manipulation has already proven to be successful in a well known type of user interface:
the desktop metaphor. This type of user interface became such a successful entrant in the office
environment mainly because a viirtual two dimensional environment was created which was a
metaphor of an environment already familiar to the user: his desk. It allowed a user to
manipulate documents (windows) on a screen just as he was used to manipulate paper
documents on his own desk: file them in a cabinet, throw them in a waste paper basket, open
and close documents etc. This familiar "look and feel" reduces the learning time which is an
important aspect in the office environment.
Similarly, this direct manipulation concept can be extended to three-dimensions to result in a
very natural and intuitive user interaction mechanism within three-dimensional and even
dynamic environments. It is the key to create artificial realities (also known as virtual
environments or cyberspace), in which the user is free to manipulate simulated three­
dimensional objects in a natural way, can walk through and interact with imaginary worlds, in
short: can be a part of the virtual model.
Based on the direct manipulation concept we can for instance create remote control systems
with which a user is able to control remotely in space (hazardous or far away environments),
remotely in time (future) or allow control in a different scale (macro- or microworld)
[Shneiderman, 1989].
In order to give the user the feeling that he is part of a virtual model and interacts with it, the
most important aspect of direct manipulation appears to be direct visualization. If the result of
the manipulation is not visualized immediately, the user will lose contact with the environment.
As Scott Fisher stated [Fisher, 1989) "the quality of the graphics appears not to be extremely
important, as long as the response is good".

3

Summary
In the area of animate response we could distinguish two classes, implicit animation and direct
manipl!llation. In the class of implicit animation, the system is in control of the transition phase.
As a result, intermediate states are known beforehand and in principle the temporal behavior is
predictable. In the class of direct manipulation however, the transition is controlled by the user.
As a result the intermediate states are unknown and the temporal behavior is unpredictable.
However, the impact of temporal requirements can be generalized to animate response as a
whole.

What can we learn from Computer Animation?
Why is a film, a long band of static images, often called a "movie"? Answering that question
also gives an answer to why computer animation is at all possible, using video displays which
can only display static images. Apparently it is possible to give a viewer an impression of
continuous movement by successively presenting displaced static images (frames). Given this,
at what rate should these frames be generated? Intuitively it is clear that the frame rate has to be
related to the speed at which the objects move. Since video displays have a refresh rate of about
100 Hz at maximum, we find ourselves restricted in frame rate as well1. This limitation has
effect on visualization of fast moving objects. Due to their fast movement, the displacement of
objects between two individual frames becomes quite large. When these object are displayed
just as if they were static, the perception of the spatial relation between images is lost: the
impression of watching objects in continuous motion is no longer there. A movie projector
however, shows separate frames at a rate as low as 24 frames per second. Even this rate is
sufficient to generate an impression of continuous motion. Why this is so can been found by
looking at individual images of a fast moving object on a camera film. There we see that the
finite exposure time of the film results in blurred images of the fast moving object. Due to this
motion blur the impression of continuous movement is mainta ined, even at a rate of 24 frames
per second. From this it is concluded that the human vision system can trade off temporal
resolution against spatial resolution.
A number of papers present methods to generate motion blur (also known as temporal anti­
aliasing) [Korein, 1983; Potmesil, 1983; Max, 1985; Grant, 1985], but arguments why it is
needed do not go any further than "animation which simulates motion blur feels more natural"
or "it smooths out jerkiness". A more theoretical foundation of why and to what extend motion
blur is needed can be found in E.H. Blake's PhD thesis on computing adaptive detail [Blake,
1989]. The next subsection is a short summary of relevant issues from this thesis .

A Viewer Centered Metric for Computing Adaptive Detail
Blake's study aims at reducing the computational complexity of computer animation by
computing just what is needed to produce convincing pictures. The thesis is centered around
two metrics, a spatial (static) priority: "objects further away from the viewpoint are visually less
important to the picture than those closer by" and a temporal (dynamic) priority: "objects
moving quickly with respect to the observer need to be redrawn more often than those at rest".
These initial intuitive formulations of the two metrics are further developed and extended with
the notion that human vision introduces a trade-off between temporal and spatial resolution.
These are the basics for arriving at measures to determine to which extent detail can be left out
without being noticeable by a viewer.

Changing images are a function of two space variables and of time. A Fourier b·ansformation of
this function results in a spectrum, a function of temporal and spatial frequencies. This function
is non-zero in a limited domain only. The effect of motion on this spectrum is that it is sheared
in the temporal frequency dimension. The amount of shear is proportional to the velocity of the
object components in the two dimensional image.

1 Note that frame rate is the rate at which successive and thus different frames are displayed. This is Mt to be
confused with the refresh rate, which is dictated by the persistence time of the display medium. The frame rate
can never exceed the refresh rate, but one frame may last for several refresh. cycles.

4

The human vision system is limited in spatial and temporal frequencies by the various
transmission systems between our mind and the outside world, resulting in a so-called window
of visibility [Watson, 1986].
Since the spectrum of moving objects is sheared, some spatial frequencies which would fall
inside the window of visibility for static objects, may fall outside this window when these
objects are in motion. Removing the spatial frequencies that fall outside the window of
visibility is equivalent with removing invisible detail of the object. However, this is exactly the
detail that in combination with the frame rate of the display system appears in aliased form,
causing the unnatural or jerky motion mentioned above.
Blake remarked that such Fourier analysis is useful for analyzing a problem and obtaining
insight into what is happening. However, the computations and algorithms are less likely to use
Fourier techniques directly .
Blake argues that optic flow analysis as introduced by Gibson [Gibson, 1979] can be used to
obtain a measure of the velocity and/or distortion of object components in the image. This
measure can be used to determine the amount of detail needed, in other words: which spatial
frequencies have to be left out, i.e. to what extend the image should be motion blurred.
For planar objects, the recognition of four orders of optic flow effects results in four orders of
frame to frame coherence:

- no relative movement
- translation in the image plane
- linear transformation in the image plane (shear, rotation, scaling)
- non-uniform motion, too high distortions.

Computer Animation versus Animate Response
The major concern of computer animation is to convince the viewer, to make him see what he is
meant to see. In general, images are rendered at the highest quality possible. For real-time
animation systems such as flight simulators this requires a major exertion which can be
maintained by specialized systems and for pre-defined situations only. Off-line computer
animation involves three main tasks: modeling, animation (i.e. the design of the choreography)
and rendering. These tasks, are iterative design processes. As far as these design processes are
supported by an interactive editor, the interactivity involves just a minor facet of the animation.
This type of animation production is a computational intensive process which in general takes
orders of magnitude more time than the real-time display of the animation itself.
This is quite different from what is needed in an interactive environment ·of which the main
device is: "the quality of the graphics is not extremely important, as long as the response is
good". In our situation the main objective is real-time display of continuous motion, even if we
have to deal with complex structures. There is not just one, but two temporal limits that
complicate the real-time display of continuou~ motion. These limits are the maximum frame rate
of the display system as well as the capacity of computing resources.

Conclusion
What we learned from computer animation is how to act upon temporal limitations as enforced
by the display system and the human vision system. We also learned that in computer
animation production, the limitation of computing resources is traded against production time.
In order to account for limited computing resources, all we can do for animate response is trade
against image quality, i.e. simplify the image generation. Unfortunately, we have to simplify
the image generation more than just by leaving out detail which is not noticeable by a viewer,
yet we like to present the best possible image. From the example mentioned in the introduction
--manipulation of a window boundary instead of manipulation of the window itself -- we
learned that even to such extent, a trade off between image quality and system response time
can often be quite adequate.
For animate response, we would have to have a metric for the level of detail related to the
computing resources available. The implicit dependency as presented in Blake's work should
be made explicit.

5

How the limitation of computing resources effects visualization of continuous motion will be
discussed in the next section.

Visualization of Motion
As became clear in the previous section, for animate response there are two temporal limits that
complicate the visualization of continuous motion. One is the limit on the frame rate as dictated
by the display system, the other is the limited capacity of computing resources. The impact of
these two limitations is the same: the frame rate needed to display continuous motion is not
sufficient, so that visible temporal aliasing may occurl.

Temporal Anti-aliasing
Can, whenever the frame rate introduces temporal aliasing, one of the temporal anti-aliasing
methods used for computer animation be of help? If we analyze the methods presented in
[Korein, 1983; Potmesil, 1983; Grant, 1985] we see that these methods are basically
supersampling techniques, due to which the computational cost of one anti-aliased frame is
much more than the cost of an aliased frame. Also the more efficient method presented in [Max,
1985] adds computation cost to each frame.
In case the computing resources can be considered to be unlimited with respect to what is
needed by the application, we are in fact dealing with a real-time animation system. In this
situation, we only have to face the limit as set by the maximum frame rate of the display system
and the supersampling methods used for computer animation might be useful.
In an interactive environment, however, it is much more likely that complexity of scenes and at
the same time real-time requirements turns out to be a combination that makes us face the
limitation on computing resources. In this situation we cannot allow any extra computational
effort because it would reduce the frame rate even further. It is remarkable that most common
temporal anti-aliasing methods used for computer animation production, produce images
containing less detail (since the high spatial frequencies are filtered out) at a cost higher than the
images containing full detail. From this it is clear that these methods are not useful. If we are
limited by computing resources, we should have a method that saves rather than adds
computational costs.
Reducing the computational costs can be done by reducing the image quality (i.e. complexity),
yet we would like to generate the best possible image. In order to do this, we need an adaptable
image generator.

Adaptive Image Generation
In computer graphics, the image g·eneration process al ways has to be tuned to the specific needs
of the application. Even when the image generation is a batch mode process performed by the
most powerful supercomputer, certain trade-offs have to be made. If we were at all to know
how to generate a physically perfect image, it would by far exceed the processing power of any
state of the art supercomputer. Because of this, a whole scale of rendering models emerged,
each with specific features and each of which tries to approximate a physical correct image to a
different level. Based on the requirements of a specific application, one of these rendering
models can be selected. The fact that worst case situations also have to be considered, quite
often leads to a choice which in practice is far from optimal.

A more sophisticated approach that avoids this problem, is adaptive image generation. By
adaptive image generation, the application is able to adjust the image generating process to the
specific needs of a particular moment. Ideally, this results in the best possible image at any
time. Globally speaking, there are two ways in which the image generation process can be
adapted: based on the rendering process or based on the object representation. We will
elaborate on this, in order to find out to what extent this can be used for animate response.

1 In fact no matter what discrete frame rate is used, always temporal aliasing will occur. However, it becomes
visible only when the alias frequency fails within the window of visibility [Watson, 1986].

6

A method based on an adaptable rendering process was suggested by Forrest [1985].
Rendering of primitives should be supported at different quality levels. As an example, Forrest
recognizes five quality levels to draw a line, starting with an aliased Bresenham line drawing,
up to a perfect anti-aliased line of which even the line ends can be specified (e.g. rounded or
square). He suggested that such a hierarchy in quality could be exploited in the context of
personal workstations. Images should first be rendered at the lowest quality level to get the
fastest response and upgraded to higher quality levels if the user does not take immediate
action.
Another example of a method based on adapting the rendering process, is image rendering by
adaptive refinement [Bergman, 1986]. Similar to what Forrest suggested, this method
improves the quality of a static image as long as there is time to do so. The image successively
goes through the following phases: display vertices of polygons, display edges of polygons,
display flat shaded polygons, add shadowing, display Gouraud shaded polygons, display
Phong shaded polygons and finally anti-alias the image where needed. The performance of the
method is enhanced by each phase making use of results of the previous phase and trimming of
the data, i.e. selecting which of the polygons should be handled by the next phase.
The interest of these methods is the combination of interactive response and the generation of
the best possible image by exploiting different levels of rendering. Both methods however,
become effective only in a static situation, making use of otherwise idle cycles in a personal
computer. Since the rendering always starts at the lowest level, it is likely that when displaying
continuous motion these methods will produce images of the lowest level only. Also, rendering
of a certain level will at least partly undo the results of previous levels. For instance, each phase
will have to overwrite pixels resulting from previous phases. At a time-scale of a few seconds,
this may not be a point of concern, but at frame rates needed to display continuous motion, the
actual writing of pixels becomes a dominant factor. Therefore these methods could be made
more efficient if we would have a way to determine which level of rendering can be supported
from the start.
Methods based on object representation adapt the rendering costs by adapting the complexity of
the scene description. Hierarchical data structures [Clark, 1976], in which sub-hierarchies
contain objects modelled in greater and greater detail, are used to render objects at different
levels of detail. Such hierarchical structures allow for a simple incremental approach: as long as
there is time, objects can progressively be refined. This can be improved by combining it with
the metric described by Blake [1989]. This metric, which takes into account the viewing
distance and speed of the objects, can be used to indicate which objects are best candidates for
further refinement. The effectiveness of this type of adaptive image generation is quite
dependent on the hierarchical data structure, since properties of the structure determine to what
extend increments can make use of previously obtained results.
Adapting the complexity of the scene description seems to be best suited for an incremental
image generation method. In the next section we will focus on hierarchical data structures that
can be used for this purpose. We note however, that ultimately a combination of adaptive scene
complexity and adaptive rendering should be considered.

Hierarchical Data Structures
Since we have to be able to deal with limited computing resources, we have to be able to
manage the image generation costs. T his managing can be provided by exploiting hierarchical
data structures. Hierarchical data structures allow definition of a so-called graphical working set
[Clark, 1976] which is that fraction of the structure that at a certain time [Hegron, 1987] is
potentially of interest. This notion has been put into practise in flight simulator applications for
a long time. T here, the most appropriate representation of an object is selected from a
hierarchical data structure at display time. Such data structures are carefully optimized for the
application.
Numerous hierarchical data structures in which objects are modelled in greater and greater
detail, have been proposed. To select candidate data structures the following issues should be
considered: automatic generation of the hierarchy, motion, relation between level of detail and
the cost of rendering, temporal anti-aliasing and texturing.

7

Automatic Generation. Not all object representations have an inherent hierarchical s~ucture .. In
such a situation we need a hierarchy that can automatically be generated. R.ecurs.1ve sp~tlal
subdivision seems an obvious way to automatically generate an oct-tree hke h1erarch1cal
structure. Although the result is a simple uniform representation, rendering of such a hie~archy
is not very efficient and the representation is not compact. Furthermore, .transf~rmat1on of
objects will require restructuring of the hierarchy. As a result such h1erarch1es are not
particularly suitable for animate response.
Rubin & Whitted stated: "creation of a hierarchical database is a non-trivial operation" [Rubin,
1980]. They presented a homogeneous representation from which nodes of the hierar~hy are
procedurally generated. Their representation is a graph structured hierarchy of nothing ~ut
bounding volumes. Each bounding volume contains subspaces, which are the bounding
volumes of the next level in the hierarchy. Their representation allows sharing of subspaces.
Increment of one level in a hierarchy of bounding volumes implies that a volume, being the
difference between the bounding volume and its subspaces, has to be subtracted!. This
subtraction would reveal previously obscured parts of the scene, which would imply a redo of
(a part of) the visibility calculation. It would be much more efficient to have a hierarchy that
incrementally adds volumes, leaving the rest as it was. The proposed sharing of subspaces
greatly reduces the amount of data storage but introduces combinatorial problems when creating
the hierarchy. Since an optimal result requires careful consideration, Rubin & Whitted
concluded that it would benefit to off-load the structuring of the hierarchy to the model creation
stage. Rubin [1982] expanded the representation to allow for geometrical transformations
between nodes. Such an expansion is extremely welcome in an animate environment, because it
facilitates the hierarchy to represent moving objects.
Detail versus Cost. In order to optimally balance image quality and temporal aspects of the
animation, the level of detail should not only be based on the visual aspects, but also on the
actual costs of the image generation. For implicit animation in particular, it would be desirable
to have an absolute quantification of the rendering cost as function of the level of detait With
this, we could determine the maximum level of detail for which the animation can be sustained.
To obtain an absolute quantification of the costs however, would require an extensive
benchmark of the actual rendering hardware used. Another complication that has to be dealt
with is that the complexity of the scene is likely to be view dependent. How to obtain such an
absolute hardware dependent quantification and how to embody this knowledge in the
hierarchy is a question that remains open.
A requisite of a data structure in case absolute quantification cannot be supplied is that the cost
to render objects should be more or less proportional to the level in the hierarchy. Adding one
level of detail should not undo all results obtained so far, but instead make optimal use of
previous calculations. Ideally, in this way, rendering by incremental addition of subsequent
levels should at most be as expensive as directly rendering at that particular level of detail.
Temporal Anti-aliasing. How well can data structures which contain object descriptions in
levels of detail support temporal anti-aliasing? As we saw in the above, temporal anti-aliasing is
equivalent with removing high spatial frequencies above a certain cut-off frequency. This cut­
off frequency is inversely proportional to the speed of an object. An object can be described by
a sum of band limited terms of increasing frequencies, a representation which can for instance
be obtained by Fourier analyses. The effect of temporal anti-aliasing on such representation
would be that the faster this object moves, the less terms would remain. This behavior may
seem ideal since then the rendering costs would be inversely proportional to the speed of the
object. Unfortunately however, an object description by a sum of band limited terms is in
general not the most efficient. It is not a natural representation of objects, so that Fourier
transformation is needed. Also the rendering of such a representation is complicated. In a static
or near to static situation, a description of even the simplest object would at least need terms up
to a frequency equivalent with the display resolution, otherwise visible detail would be lost. As
a result, whether a description by band limited terms pays. off is dependent on the extent to
which Fourier transformation simplifies temporal anti-aliasing and complicates rendering. It is
likely to pay off only in situations where any other representation- would be of similar
complexity, such as may be the case for textures.

8

Textures. For textures expressed as a sum of band limited terms, Norton et.al. (1982]
described a method of limiting texture detail by "clamping" those terms that exceed a certain
frequency. Since the authors just considered spatial anti-aliasing, their clamping frequency is
fixed as it is determined by the display resolution only. This method can be extended for
temporal anti-aliasing if the clamping frequency is related to the speed of the object. Other
spatial anti-aliasing methods for textures exploit hierarchies of various resolution texture maps
[Crow, 1984; Glassner, 1986]. Temporal anti-aliasing of such textures can be done by
selecting the appropriate resolution map, again dependent on the speed of the object. However,
for animate response, incremental image generation is of more concern than temporal anti­
aliasing. It may be clear that in this sense textures expressed as a sum of band limited terms are
favorable, since they are inherently incremental. This as opposed to textures represented by
various resolution maps, since the costs of texture mapping is independent of the texture
density, so that redu.cing texture resolution will not reduce the cost of the image generation.
We conclude that at this moment there is no unified structure which serves all needs. We noted
that for rendering optimal structuring is a requisite so that automatic generation of hierarchies is
not likely to be a real-time process. Procedural hierarchies appear to be very attractive,
especially when they feature sharing of sub-hierarchies and transformation between nodes.
Since obtaining an absolute measure of the cost of rendering is a problem, requisite of a data
structure is that increment of one level in the hierarchy should result in a simple incremental
calculation. We did not find an efficient structure that does support temporal anti-aliasing in a
general way. A special situation is representation of textures by band li.mited terms. This
representation can easily be temporal anti-aliased and also has the advantage that rendering
costs relates to detail.

Research Topics
From the above, it seems that from a technical point of view, basic knowledge and techniques
to implement a human computer interface which supports animate response is already there.
However, from a human perceptual point of view, adequate knowledge of how to exploit
cognitive skills is still lacking. This knowledge is especially of interest for :implicit animation,
which also incorporates more abstract types of response. Especially the more abstract type of
response leads to interesting issues such as the concepts of illusion, the mechanism by which
users are able to associate cues with their own experience and the issue of appropriate
abstractions.
For this we would have to develop a human computer interaction environment which forms the
basis for further research on implicit animation. At first we ought to restrict ourselves to an
interactive system for dynamic exploration and manipulation (which includes editing) of
inherently static models. The implementation would be targeted at future low cost workstations.
T he development of the system should emphasize on data structuring. As became clear in the
previous section, the internal data representation has to fulfil requirements based on visual and
temporal aspects of animation. The data structure should preferably be a procedural hierarchical
scene description of which all elements contain information how they should be rendered
[Cook, 1984].
A straight forward method for temporal anti-aliasing is by simplifying the object representation
to such extent that ample time remains for a conventional temporal anti-aliasing method. A data
structure has to be found which offers a more general and efficient solution.
It should be noted that the internal data representation should match the hardware characteristics
and vice versa. For instance, it makes quite a difference whether or not it is a parallel system
and if so whether the system exploits image space or object space parallelism. Vice versa, if
incremental calculations and temporal anti-aliasing has to be supported, it is unavoidable that
pixels will have to be addressed multiple times and results will have to be accumulated.
Multiple access per pixel in a real time environment can only be solved by massive parallelism.
For the external world (i.e. the user) the data representation should be naturally presentable and
manipulable. This is a requirement which potentially conflicts with requirements of the internal
data structure. It is not likely that one unified data structure can be found. Object oriented

9

methods however, provide the necessary data abstraction to be able to hide the internal details
of a hierarchy implementation.
More on technical aspects. The first prototype system should exploit a double buffered frame
store. Frames can be swapped at a constant frame rate. The invisible frame should be
incrementally improved as long as there is time.
This basic system can be optimized in several ways. A first optimalization would be to make
use of the metric for computing adaptive detail as proposed by Blake [1989]. This metric is
based on two visual aspects, i.e. speed of the object and (weighted) viewing distance. In our
case, this metric would not be applied to determine the absolute level of detail at which objects
should be rendered, but would be used to give priority to the elements of the graphical working
set. This priority will be used to selectively increment the level of detail of those elements that
will likely improve the image quality most. A complication that has to be dealt with is that the
priority is likely to change during the animation.
Making optimal use of frame coherence is an essential optimalization factor in interactive
environments. In its simplest form frame coherence can be exploited by partially updating the
image. The image has to be redrawn only in the area where the image is known to be changed.
A more elaborate way to exploit this time based coherence is by manipulating the frame rate. As
we saw in the above, the frame rate needed to display continuous motion should be related to
the speed of the object components in the image. Since a movie projector is operated completely
time independent of the camera, it is obvious that the simplest way to synchronize both
mechanical devices --by operating at a constant frame rate-- is chosen. In our situation
however, we do not have to deal with mechanical devices and there is a.tight coupling between
the image generation system and the image display system, so that synchronization is relatively
easy. This gives us the opportunity to vary the frame rate, related to the speed of the object
components in the image. Even more so, each object might have its individual frame rate.
As we saw in [Blake, 1989), the use of frame coherence does not have to be restricted to
frames or parts of frames that do not change in time. Certain types of uniform 3-D motion can
be approximated in a mere translation or a linear transformation (shear, rotation & scaling) of
the object components in the image plane. Exploiting this more complex form of frame
coherence might be worth considering. It should be noted however that in general 3-D motion
has effect on shading. This will restrict the extend to which such translation or transformation
of images can be used.
An incremental system as described is self adapting, given the real-time requirements it
automatically generates images of the maximum obtainable quality level. A less desirable side
effect of this solution is that varying complexity of the scene during the animation, may cause
disturbing switches of level of detail. Since for implicit animation time restrictions are
somewhat liberal, we can trade time for detail. It needs to be investigated to what extend it is
acceptable to fiddle with the temporal behavior of the animation (change speed) to avoid
disturbing changes of level of detail.

Conclusion
Ideally a graphical user interface should be a real-time animation system. However, we saw
that limitations of computing resources enforce an approach by which image quality is
adaptively reduced to be able to fulfil real-time requirements. To make this possible in a
sufficiently flexible way, the need for hierarchical data structures was recognized. Such an
hierarchical data structure should on one hand shield off and on the other hand exploit the
hardware characteristics. Although the basic concepts of such structures are known, a unified
structure which satisfies both internal as well as external requirements could not be found.

Acknowledgement
The author gratefully acknowledges the useful comments and suggestions given by E.H.
Blake.

10

References
[Bergman, 1986]

[Blake, 1989]

[Clark, 1976]

[Cook, 1984]

[Crow, 1984]

[Fisher, 1989]

[Forrest, 1985]

[Gibson, 1979]

[Glassner, 1986]

[Grant, 1985]

[Hegron, 1987]

[Korein, 1983]

[Max, 1985]

[Norton, 1982]

[Potmesil, 1983)

[Rubin, 1980]

[Rubin, 1982]

[Shneiderman, 1989]

[Watson, 1986]

Bergman, L., Fuchs, and H., Grant, E., "Image Rendering by
Adaptive Refinement", Computer Graphics (20, 4) July 1989 pp 29-37

Blake, E.H., "Complexiry in Natural Scenes: A Viewer Centered
Metric for Computing Adaptive Detail", PhD Thesis. Queen Mary
College, London 1989
Clark, J.H., "Hierarchical Geometry Models for Visible Surface
Algorithms", Comm. of the ACM (19, 10) October 1976 pp 547-554

Cook, R.L., "Shade Trees", Computer Graphics (18, 3) July 1984 pp
223-231
Crow, F.C., "Summed-Area Tables for Texture Mapping", Computer
Graphics. (18, 3) July 1984 pp 207-212

Fisher, S., Panel "Virtual Environments and Interactivity: Windows to
the Future" SIGGRAPH'89 Boston, August, 1989
Forrest, A.R., "Antialiasing in Practice", in NA TO ASI Series, editor
Earnshaw, R.A. (F17) 1985 pp 113-134

Gibson, J .J. "The Ecological Approac h to Visual Perception."
Houghton Mifflin co, Boston, 1979

Glassner, A.S. "Adaptive precision in Texture Mapping", Computer
Graphics (20, 4) July 1986 pp 297-306

Grant, C.W., "Integrated Analytic Spatial and Temporal Anti-Aliasing
for Polyhedra in 4-Space", Computer Graphics (19, 3) July 1985 pp
79-84
Hegron, G ., "Dynamic Management of 3D Scenes",
EUROGRAPHICS'87, Editor Marechal, G. August 1987 pp 529-542

Korein, J., and Badler, N., "Temporal Anti-Aliasing in Computer
Generated Animation", Computer Graphics (17, 3) July 1983 pp 377-
388
Max, N.L., and Lerner, D.M., "A Two-and-a-Half-D Motion-Blur
Algorithm", Computer Graphics (19, 3) July 1985 pp 85-93

Norton, A., Rockwood, A.P., and Skomolski, P.S., "Clamping: A
Method of Anti-Aliasing Textured Surfaces by Bandwidth Limiting in
Object Space", Computer Graphics (16, 3) July 1982 pp 1-8

Potmesil, M., "Modeling Motion Blur in Computer-Generated
Images", Computer Graphics (17, 3) July 1983 pp 389-399

Rubin, S.M., and Whitted, T., "A 3-Dimensional Representation for
Fast Rendering of Complex Scenes", Computer Graphics (14, 3) July
1980 pp 110-116
Rubin, S.M., "The Representation and Display of Scenes with a Wide
Range of Detail", Computer Graphics and Image Processing (19) 1982
pp 291-298
Shneiderman, B., "Future Directions for Human-Computer
Interaction", Summer School on User Interfaces , Tampere, Finland,
June 1989
Watson, A.B., Ahumada, A.J. (jr), and Farrell, J.E., "Window of
Visibility: A Psychophysical Theory of Fidelity in Time-Sampled
Visual Motion Displays", J.Opt.Soc.Am.A (3, 3) 1986 pp 300-307

11

