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Abstract We show that the well-known unfold/fold transformation strategy also is fruitful for the
(formal) derivation of correct pointer algorithms. The key that allows this extension is the algebra
of partial maps which allows convenient description and manipulation of pointer structures at the
functional level.

1 Introduction

It is well-known that algorithms involving pointers are both difficult to write and to verify. The
reason is that, due to the implict connections through paths within a pointer structure, the side
effects of a pointer assignment are usually much harder to survey than those of an ordinary
assignment. With this paper we want to show that these difficulties can be greatly reduced by
making the store, which is an implicit global parameter in procedural languages, into an explicit
parameter and by passing to an applicative treatment using a suitable algebra of operations on
the store.

The storage state of a von Neumann machine can be viewed as a total mapping from addresses
to certain values. A part of such a state that forms a logical unit may then be represented by
a partial submapping of that mapping. This gives the possibility of describing the state in a
modularized way as the union of the submappings for its logical subunits. In the case of pointer
structures this means that the usual “spaghetti” structure of the complete state can be (at least
partly) disentangled. Therefore we use the algebra of partial maps as our tool for specifying and
developing pointer algorithms in a formal and yet convenient way.

We restrict ourselves here to the case of singly linked lists. However, the approach is not
limited to such simple structures: In [3] we have derived an efficient and intricate garbage collection
algorithm for a storage structure that allows the representation of arbitrary graphs.

Notationally, we closely follow the (ALGOL variant of) the language CIP-L (cf. [1,2]). In
particular, we denote semantic equivalence of expressions by ≡ : We have E1 ≡ E2 iff both E1

and E2 are undefined (non-termination or abortion) or both are defined and have the same value.
Equivalences are also denoted in the form of transformation rules, viz. as

E1xy [C

E2

where C is a (possibly empty) list of applicability conditions, i.e., of conditions sufficient for the
validity of the equivalence.

As an important aid in specifying and developing recursive routines we use assertions or
restrictions about their parameters, formulated as Boolean expressions of the language. Let R be
a Boolean expression possibly involving the identifier x. Then the declaration

funct f ≡ (m x : R) n : E



of function f with parameter x restricted by R and with body E is by definition equivalent to

funct f ≡ (m x) n : if R then E else error fi .

This means that f is undefined for all arguments x that violate the restriction R; i.e., R acts as
a precondition for f . If f is recursive, R has to hold also for the parameters of the recursive calls
to ensure definedness; hence in this case R corresponds to invariants as known from imperative
programming. Analogous constructions apply to statements and procedures.

2 The Algebra of Partial Maps

The use of algebraic operations on maps for describing the effect of a program dates back at least
to [12]. The most useful operation in our setting, viz. map union, however, seems to have been
neglected until recently [3, 11].

A (partial) map m from a set M to a set N is a subset of M × N such that (x, y) ∈
m ∧ (x, z) ∈ m ⇒ y ≡ z. Some of our notation derives from this set view of maps. E.g., by ∅ we
denote the empty partial map from M to N . For finite maps we assume a boolean-valued equality
test =. This is to be distinguished from the semantic equivalence ≡ of expressions: we have

m = n ≡ true ⇔ m ≡ n .

Let m : P−→Q be a partial map. We write ↓m, ↑m for domain and range of m, resp.
Moreover, we define

set(m)
def≡ ↓m ∪ ↑m .

For s⊆P , [s 7→y] is the constant map {(x, y) | x ∈ s}. In using this notation we omit singleton
set braces, i.e., we write [x 7→y] instead of [{x}7→y]. Note that [x 7→y] ≡ {(x, y)}. To cope with
partialities in an algebraically convenient way, we define, for maps m,n and elements x, y ∈ P ,

[m(x)7→n(y)]
def≡ ∅

if x 6∈ ↓m or y 6∈ ↓n.
The restriction of a map m : M−→N to a set s⊆M is

m|s def≡ m ∩ (s×N) .

Moreover,

m	s def≡ m|s.

Here again we omit singleton set braces, i.e., we write m	x instead of m	{x}. Note that both
m|s ⊆ m and m	s ⊆ m. The following decomposition property is the key to recursions over maps:

m ≡ m|s ∪ m	s .

Two maps m,n : M−→N are compatible if m|(↓m ∩ ↓n) ≡ n|(↓m ∩ ↓n). This holds in
particular if ↓m∩↓n ≡ ∅. For compatible m,n their union m∪n is again a map. This generalizes
to families (mi)i∈I of maps (I may even be infinite) if the maps mi are pairwise compatible; we
then write

⋃
i∈I

mi for the union map. If I ≡ ∅, we set
⋃
i∈I

mi ≡ ∅ as well. It should be clear that ∅,

[.7→.], and
⋃

form a complete set of constructors for the set of partial maps, since we have

m ≡
⋃

x∈↓m
[x 7→m(x)] .



The operation of map union is the key tool in obtaining a modular description of pointer
structures, since it allows viewing a (total) storage state as the union of those of its (partial)
substates that form logical units. This aspect of modularization is reflected by a large number of
distributive laws that allow propagation of operations to substates of a state. For the operations
introduced so far we have:

↓(m ∪ n) ≡ ↓m ∪ ↓n
(m ∪ n)|s ≡ m|s ∪ n|s

↑(m ∪ n) ≡ ↑m ∪ ↑n
(m ∪ n)	s ≡ m	s ∪m	t .

Another important operation is map overwriting (see e.g. [6]): Given maps m,n : M−→N
we define

m/−n def≡ (m	↓n) ∪ n .

Hence,
(m/−n)(x) ≡ if x ∈ ↓n then n(x) else m(x) fi.

In other words, m/−n results from m by changing the values according to the prescription of n
(if any). For example, m/−[x 7→y] sets the value of x to y. This operation will be our main tool
for describing selective updating. Its most important properties for our purposes are the following
ones:

1. Monoid properties:
∅/−m ≡ m/−∅ ≡ m
(l/−m)/−n ≡ l/−(m/−n)

2. Overwriting and union:
m/−n ≡ n/−m iff m and n are compatible.
In this case, m/−n ≡ m ∪ n.

3. Domain properties:
↓(m/−n) ≡ ↓m ∪ ↓n
m/−n ≡ n ⇔ ↓m ⊆ ↓n

4. Overwriting and submaps:
m/−n ≡ m ⇔ n ⊆ m

5. Sequentialization:
l/−(m ∪ n) ≡ (l/−m)/−n
provided m and n are compatible.

6. Annihilation:
m ⊆ l ⇒ l /− (m ∪ n) ≡ l /− n
provided m and n are compatible. This is an immediate consequence of the sequentialization
and submap properties.

7. Distributivity:
(l ∪m)/−n ≡ (l/−n) ∪ (m/−n)
provided l and m are compatible.

8. Localization:
↓l ∩ ↓n ≡ ∅ ⇒ (l ∪m)/−n ≡ l ∪ (m/−n)
provided l and m are compatible. This property allows localizing side effects to that part of
a store they really affect.

The map operations introduced enjoy a vast number of further useful algebraic laws. Some of
them can be found in [3].



3 Chains

As an example of how to describe pointer structures within the algebra of maps we now study singly
linked lists. We abstract from the concrete contents of the records in such a list and consider only
their interrelationship through the pointers, since this is the only source of problems in pointer
algorithms. Then a state simply is a finite partial map m : cell−→cell where cell is the set of
storage cells; the set of states is denoted by state. A single cell x together with its contents y is
modeled by the map [x 7→y].

By a chain we mean a (finite) cycle-free singly linked list. Such a chain contains a number of
cells in a certain order prescribed by the links in the list. This induces a sequence structure on
these cells: The first element in the sequence is the head cell, followed by the others in the order
of traversal. Since there is no cycle, the sequence is repetition-free.

In chains one frequently uses a special chain terminator common to all chains considered (e.g.,
nil in Pascal). Let therefore 2 ∈ cell be a distinguished element, called the anchor. The elements
of cell\{2} are called proper cells. In the sequel we require 2 6∈ ↓m for all states m considered.
This means that 2 may never be assigned a “contents”and hence never be “dereferenced”; it
will always be an “empty cell”, whence our notation. Moereover, this implies that there can be
no 2 cell properly within a chain; if present, 2 terminates the respective list. A chain is called
anchored if it ends with 2, i.e., if its last proper cell contains 2.

By the above considerations, anchored chains are in exact correspondence with non-empty
repetition-free sequences of proper cells. Given such a sequence, we can construct an anchored
chain using

funct chain ≡ (cellsequ s : ischainable(s)) state :
|s|⋃
i=1

[s[i] 7→s[i+ 1]] .

By |s| we denote the length of s and by s[i] the i-th element of s; if i > |s| or i = 0, we set s[i]
def≡2.

The predicate ischainable is given by

funct ischainable ≡ (cellsequ s) bool :
if s = <> then false

else first(s)6=2 ∧ (rest(s) = <> cor
(first(s) 6∈rest(s) ∧ ischainable(rest(s)))) fi ,

where cor is the sequential or conditional disjunction evaluated from left to right. Conversely, given
a cell x and a state m we can retrieve the sequence of cells in the sublist starting from x (if any)
using

funct sequ ≡ (cell x, state m) cellsequ :
if x 6∈↓m then <> else <x>+ sequ(m(x),m) fi .

Here, <> denotes the empty sequence, <x> is the singleton sequence consisting just of x, and +
denotes concatenation. Note that this function will not terminate if the sublist within m starting
from x contains a cycle. In our applications this will not occur. For more general use, however,
one should base this on a non-strict functional language in which the algorithm then would return
a periodically infinite sequence of cells. Then a cell y can be reached from x following the links of
m (zero or more times) iff y ∈ sequ(x,m), where

funct . ∈ . ≡ (cell y, cellsequ s) bool :
if s = <> then false else y = first(s) cor y ∈ rest(s) fi .

To characterize the case where the sublist starting from x in m is an anchored chain, we use

funct isanchored ≡ (cell x, state m) bool :
if x 6∈↓m then false else m(x) = 2 cor isanchored(m(x),m) fi .



This function again doesn’t terminate if there is a cycle, and it yields false if it runs into a “dangling
reference”, i.e., a cell different from 2 not having any contents.

If isanchored(x, s) ≡ true, the sublist starting from x actually is an anchored chain. Its last
proper cell, i.e., the one containing the nil pointer, is obtained by

funct lastcell ≡ (cell x, state m : isanchored(x,m)) cell : last(sequ(x,m))

We want to derive a direct recursion for this function:

lastcell(x,m)
≡ last(sequ(x,m))

≡ (unfold sequ)

last(if x 6∈↓m then <>
else <x>+ sequ(m(x),m) fi)

≡ (since x 6∈↓m≡false by isanchored(x,m))

last(<x>+ sequ(m(x),m))

≡ (case introduction)

if m(x) = 2 then last(<x>+ sequ(m(x),m))
else last(<x>+ sequ(m(x),m)) fi

≡ (evaluation of sequ(m(x),m) in then-branch)

if m(x) = 2 then last(<x>+<>)
else last(<x>+ sequ(m(x),m)) fi

≡ (simplification, using sequ(m(x),m)6≡<> in else-branch)

if m(x) = 2 then x
else last(sequ(m(x),m)) fi

≡ (fold lastcell)

if m(x) = 2 then x
else lastcell(m(x),m) fi .

A similar development shows that

Lemma 3.1
sequ(x,m) ≡ if m(x) = 2 then <x> else <x>+ sequ(m(x),m) fi
provided isanchored(x,m) ≡ true.

Moreover, one easily proves by induction on the length of s that

Lemma 3.2

sequ(s[1], chain(s)) ≡ s provided ischainable(s) ≡ true.

Conversely, we have

Lemma 3.3

chain(sequ(x,m))⊆m provided isanchored(x,m).

4 Concatenation of Chains “in Situ”

4.1 Specification and First Explicit Solution

We now want to specify and develop an algorithm for concatenating two non-overlapping anchored
chains “in situ”. (We do not consider the trivial case of empty chains which would only lead to
tedious case distinctions.) First we give the precondition for our desired function:



funct concpc ≡ (cell x, cell y, state m) bool :
(isanchored(x,m) ∧ isanchored(y,m)) cand set(sequ(x,m) ∩ setsequ(y,m)) = ∅ ,

where cand is the sequential or conditional conjunction evaluated from left to right.
So we consider a state m in which the sublists starting from x and y are anchored chains the

sets of proper cells of which are disjoint. We want to form a new state in which the concatenation of
these two sublists is overwritten onto the same set of proper cells; moreover, the order of traversal
within the sublists should be preserved, and all cells from the sublist of x should precede all cells
in the sublist of y. This can be specified by

funct conc ≡ (cell x, cell y, state m : concpc(x, y,m)) state :
m /− chain(sequ(x,m) + sequ(y,m)) .

So the proper cells of the subchains are collected in the right order, the resulting sequence is chained
and this chain is overwritten onto m re-using the same cells. Hence, no copying is involved and
we really are specifying concatenation “in situ”.

We now want to develop an algorithm from this specification. First, we concentrate on the

subexpression chain(sequ(x,m)+sequ(y,m)). For abbreviation, we set s
def≡ sequ(x,m) and t

def≡ sequ(y,m).
Now we calculate

chain(s+ t)

≡
|s+t|⋃
i=1

[(s+ t)[i] 7→(s+ t)[i+ 1]]

≡
|s|−1⋃
i=1

[s[i] 7→s[i+ 1]] ∪ [s[|s|] 7→t[1]] ∪
|s|+|t|⋃
i=|s|+1

[t[i− |s|] 7→t[i+ 1− |s|]]

≡ chain(s)	s[|s|] ∪ [s[|s|] 7→t[1]] ∪
|t|⋃
j=1

[t[j] 7→t[j + 1]]

≡ (chain(s)/−[last(s)7→first(t)]) ∪ chain(t) .

From this we obtain

m /− chain(sequ(x,m) + sequ(y,m))
≡ m /− ((chain(s)/−[last(s) 7→first(t)]) ∪ chain(t))

≡ (commutativity of ∪)

m /− (chain(t) ∪ (chain(s)/−[last(s)7→first(t)]))

≡ (sequentialization, associativity of /−)

m /− (chain(t)/−chain(s)/−[last(s)7→first(t)])
≡ m /− (chain(sequ(y,m))/−chain(sequ(x,m))/−[last(s)7→first(t)])

≡ (Lemma 3.3, annihilation)

m/−[last(s)7→first(t)]
≡ m/−[lastcell(x,m) 7→y] .

Now we introduce an auxiliary function for computing this expression:

owlast(m,x, y)
def≡ m/−[lastcell(x,m))7→y] .

We have
conc(x, y,m) ≡ owlast(m,x, y) .

Now we derive a recursion for owlast .

owlast(m,x, y)

≡ (unfold owlast)



m/−[lastcell(x,m) 7→y]

≡ (by the recursion for lastcell)

if m(x) = 2 then m/−[x 7→y] else m/−[lastcell(m(x),m)7→y] fi

≡ (fold owlast)

if m(x) = 2 then m/−[x 7→y] else owlast(m,m(x), y) fi .

Termination of this recursion follows from isanchored(x,m). It is quite reassuring that the fun-
damental unfold/fold technique for deriving recursions also applies to pointer algorithms in this
setting.

4.2 Introducing Selective Updating

Since we have even obtained a tail-recursive version, we are already very close to an imperative
program. To get there, we introduce a procedure specified by

proc powconc ≡ (var state m, cell x, y : concpc(x, y,m))
m := owlast(m,x, y)

Note that this clearly specifies m as a transient parameter, whereas x and y are passed by value.
Therefore the imperative version of powconc needs local variables for x and y, whereas it may op-
erate on m directly. This is described by the following schematic rule for passing from a procedure
that calls a tail-recursive function to a procedure with a loop in its body:

proc p ≡ (var m a, n b : P (a, b)) : a := f(a, b)

where
funct f ≡ (m a, n b) m :

if C(a, b) then T (a, b) else f(K(a, b), L(a, b)) fixy [ NEW[[B]]

proc p ≡ (var m a, n B : P (a,B)) :
d var n b := B ;

while ¬ C(a, b) do (a, b) := (K(a, b), L(a, b)) od ;
a := T (a, b) c .

Note that a, b, and B may stand for tuples of variables. The condition NEW[[B]] states that B has
to be a (tuple of) fresh identifier(s). Applying this rule we obtain

proc powconc ≡ (var state m, cell X, Y : concpc(X, Y,m)) :
d (var cell x, y) := (X, Y ) ;

while m(x) 6= 2 do (m,x, y) := (m,m(x), y) od ;
m := m /− [x 7→y] c

Our final version results from eliminating useless assignments of the form z := z as well as the
variable y which never is changed:

proc powconc ≡ (var state m, cell X, Y : concpc(X, Y,m)) :
d var cell x := X ;

while m(x) 6= 2 do x := m(x) od ;
m := m /− [x 7→Y ] c .

If we write the assignment
m := m /− [x 7→Y ]



in a Pascal-like way as
x ↑ := Y ,

(where m now is an implicit parameter), we see that we actually have derived a version with
selective updating.

In the derivation we have not made use of any assumptions about absence of sharing. Indeed,
if in m there are pointers from other data structures to (parts of) the lists headed by x and y,
there will be indirect side effects on these pointers. However, since by the specification we know
the value of the complete store after execution of our procedure, we can calculate these effects
using our algebraic laws. Also, one can easily write stronger preconditions that exclude sharing if
this is desired.

5 Chain Reversal

5.1 Specification and First Explicit Solution

Next we want to derive a procedure for reversing a non-empty chain “in situ”. Again we first
specify a purely applicative version. The reverse of a chain should contain exactly the same proper
cells as the original chain, however, in reverse order of traversal. We can express this as follows:

funct reverse ≡ (cell x, state m : isanchored(x,m)) state :
m /− chain(rev(sequ(x,m)))

where rev is the reversal function on sequences.
Let us now derive an explicit form of reverse(x,m). Again, we first concentrate on the subex-

pression rev(sequ(x,m)). Let s
def≡ sequ(x,m). We calculate:

chain(rev(s))

≡
|rev(s)|⋃
i=1

[rev(s)[i]7→rev(s)[i+ 1]]

≡
|s|⋃
i=1

[s[|s|+ 1− i] 7→s[|s|+ 1− (i+ 1)]]

≡ (index transformation j ≡ |s| − i)
|s|−1⋃
j=0

[s[j + 1] 7→s[j]]

≡ [s[1]7→s[0]] ∪
|s|−1⋃
j=1

[s[j + 1] 7→s[j]]

≡ [x 7→2] ∪
|s|−1⋃
j=1

[s[j] 7→s[j + 1]]−1

≡ [x 7→2] ∪ (
|s|−1⋃
j=1

[s[j]7→s[j + 1]])−1

≡ [x 7→2] ∪ (chain(s)	s[|s|])−1
≡ [x 7→2] ∪ chain(s)−1	2 .

Here we temporarily make use of the map chain(s)−1 which is not a state; however, chain(s)−1	2
again is. Now we introduce an auxiliary function

owrev(m,x, y)
def≡ m /− [x 7→y] /− chain(sequ(x,m))−1	2

with the embedding
reverse(x,m) ≡ owrev(m,x,2) .



For abbreviation we introduce n
def≡ m /− [x 7→y]. Now we can develop a recursion equation:

owrev(m,x, y)

≡ (unfold owrev)

m /− [x 7→y] /− chain(sequ(x,m))−1	2
≡ n /− chain(sequ(x,m))−1	2
≡ (by Lemma 3.1 and definition of chain)

if m(x) = 2 then n /− [x 7→2]−1	2
else n /− ([x 7→m(x)] ∪ chain(sequ(m(x),m)))−1	2 fi

≡ (distributivity, inverse)

if m(x) = 2 then n /− [2 7→x]	2
else n /− ([m(x)7→x]	2 ∪ chain(sequ(m(x),m))−1	2) fi

≡ (m(x) 6=2 in else-case)

if m(x) = 2 then n /− ∅
else n /− ([m(x)7→x] ∪ chain(sequ(m(x),m))−1	2) fi

≡ (neutrality, sequentialization)

if m(x) = 2 then n
else n /− [m(x) 7→x] /− chain(sequ(m(x),m))−1	2 fi .

Now we are almost in the position to fold with the definition of owrev . However, this would
need the expression sequ(m(x), n) instead of sequ(m(x),m) in the else-branch. Fortunately one
can show

Lemma 5.1

(1) If z ∈ ↓l ≡ true and u ∈ sequ(z, l) 6≡ true then u 6≡ z and u ∈ sequ(l(z), l) 6≡ true.

(2) sequ(z, l) ≡ sequ(z, l/−[u7→v]) provided u ∈ sequ(z, l) 6≡ true.

Proof: (1) By assumption,

true 6≡ u ∈ sequ(z, l) ≡ u ∈ (<z>+ sequ(l(z), z)) ≡ u ∈ <z> cor u ∈ sequ(l(z), z) .

By definition of cor we must have u ∈ <z> 6≡ true, i.e. u ∈ <z> ≡ false. Now the
claim is immediate.

(2) is proved by computational induction (see e.g. [9]) with the predicate

P [f ]
def⇔ ∀ l : ∀ z : ∀ u : ∀ v :

u ∈ sequ(z, l) 6≡ true ⇒ f(z, l) ≡ f(z, l/−[u 7→v]) .

The induction base P [Ω] is trivial. For the induction step assume P [f ] and u ∈
sequ(z, l) 6≡ true. For the functional τ associated with the body of sequ we get

τ [f ](z, l)
≡ if z 6∈↓l then <> else <z>+ f(l(z), l) fi

≡ (by (1) and the induction hypothesis P [f ])

if z 6∈↓l then <> else <z>+ f(l(z), l/−[u7→v]) fi

≡ (by (1))

if z 6∈↓(l/−[u 7→v]) then <>
else <z>+ f((l/−[u7→v])(z), l/−[u 7→v]) fi

≡ τ [f ](z, l/−[u 7→v]) .



This now allows folding with the definition of owrev in the above expression yielding the
recursion

owrev(m,x, y) ≡ if m(x) = 2 then n else owrev(n,m(x), x) fi .

Again we have arrived at an (obviously terminating) tail recursion.

5.2 A Version With Selective Updating

Specifying a procedure

proc powrev ≡ (var state m, cell x : isanchored(x,m)) :
m := reverse(x,m))

we obtain, as in the previous section, the final version

proc powrev ≡ (var state m, cell X : isanchored(X,m)) :
d (var cell x, y) := (X,2) ;

while m(x) 6= 2

do (m,x, y) := (m /− [x 7→y],m(x), x) od;
m := m /− [x 7→y] c

Note that sequentialization of the collective assignment would require an auxiliary variable.
This program describes a well-known algorithm for reversing a list “in situ”. Whereas verifi-

cation purely at the procedural level is by no means easy (see e.g. [5, 8]), in particular if all the
details were to be filled in, we have derived and thereby verified the program by a fairly short and
simple formal calculation using standard transformation techniques.

6 Conclusion

We have shown with two examples how to derive algorithms involving pointers and selective updat-
ing from formal specifications using standard transformation techniques. The key to the method
consists in considering the store as an explicit parameter, since then one has complete information
about sharing and therefore complete control about side effects. We deem this approach much
clearer (and much more convenient) than the idea of hiding the store and coming up with special
logics (see e.g. [10, 7, 5]) that capture the side-effects indirectly, as needs to be done in the field
of verification of procedural programs.

Staying at the applicative level almost to the very end of the derivations has allowed us to
take full advantage of the powerful algebra of partial maps. The operations of that algebra are
even that expressive that we did not need to explain anything with the help of diagrams. This
may seem due to the simplicity of the algorithms. However, also when developing the intricate
garbage collection algorithm described in [3] we quite soon stopped drawing diagrams because the
algebraic formulation was clearer and much more modular. Another advantage of the applicative
treatment is that if additional predicates or operations on maps are needed, they are much more
easily added at the applicative than at the procedural level. Finally, if pointer algorithms are
developed in a systematic way at the applicative language level, there is no need for introducing
additional imperative language concepts such as the highly imperspicuous pointer rotation [13].

We are convinced that our approach can be extended into a convenient method for constructing
systems software with guaranteed correctness.
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