Skip to main content

Shape Memory Materials: Mathematical Modelling and Numerical Simulations

  • Conference paper
  • 127 Accesses

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 259))

Abstract

The shape memory effect is a physical property characteristic of numerous solids, including various metallic alloys and non-metailic solid materials like polymers. This property consists in an ability of a solid subject to plastic deformation to recover its original shape after an appropriate thermal treatment (possibly complemented by a mechanical loading). The effect has already been discovered in the mid-thirties, but an explosive development of the interest in it, as well as understanding of its enormous applicability range date from the late sixties and are related to the discovery of extraordinarily strong and, equally, preserved in time, shape memory property of Ti-Ni alloy (Nitinol), cf. [6,29]. The same type of effects has been discovered also in many other metallic alloys. There exists, in- between, an extensive literature devoted to the physics of shape memory effect (cf. [6,17,28]) and its applications (cf. [3,6,12]). It is not our objective to give any overview of these aspects. What we are going to expose is related to the most common characteristic features of the dynamical processes in materials exhibiting shape memory and then to construct phenomenological models capable of forecasting the developments in space and time both qualitatively and quantitatively. Since the behavior is strongly affected by the choice of a specific class of materials, we shall focus on metallic alloys, with Nitinol in mind, in particular. We shall discuss the applicability range of the models proposed and shall show some typical results of numerical experiments which visualize their forecasting value.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Achenbach, I. Müller: Creep and yield in martensitic transformation. Ingenieur-Archiv, 53 (1983), 73–83.

    Article  MATH  Google Scholar 

  2. M. Achenbach, I. Müller: Shape memory as a thermally activated process. Hermann-Föttinger Institut, TU Berlin, Preprint, 1984.

    Google Scholar 

  3. E.C. Aifantis, J. Gittus, Eds.: Phase Transformations. Elsevier, Amsterdam, 1986.

    Google Scholar 

  4. H.W. Alt, K.-H. Hoffmann, M. Niezgódka, J. Sprekels: A numerical study of structural phase transitions in shape memory alloys. Inst. of Mathematics, University of Augsburg, 1985.

    Google Scholar 

  5. P. Colli, M. Frémond, A. Visintin: Thermo-mechanical evolution of shape memory alloys. Pubbl. No. 607, IAN CNR, Pavia, 1988.

    Google Scholar 

  6. L. Delaey, M. Chandrasekaran, Eds.: Martensitic Transformations. Les Editions Physique, Les Ulis, 1984.

    Google Scholar 

  7. J. Ericksen: Twinning of Crystals I. In: S.S. Antman et al., Eds, Metastability and Incompletely Posed Problems, Springer-Verlag, New York, 1987, 77–93.

    Chapter  Google Scholar 

  8. F. Falk: Martensitic domain boundaries in shape-memory alloys as solitary waves. In [6].

    Google Scholar 

  9. F.Falk: Elastic phase transitions and nonconvex energy functions. In K.-H. Hoffmann, J. Sprekels, Eds, Free boundary Problems—Theory and Applications V-VI, Longman, London, 1990.

    Google Scholar 

  10. M. Frémond: Shape memory alloys. A thermomechanical model. In: K.-H. Hoffmann, J. Sprekels, Eds, Free Boundary Problems -Theory and Applications V-VI, Longman, London, 1990.

    Google Scholar 

  11. A. Friedman, J. Sprekels:, to appear.

    Google Scholar 

  12. D. Goldstein, L. McNamara, Eds.: NITINOL Heat Engine Conference Proceedings. Naval Surface Weapons Center Report No. NSWC MP 79–441, 1979.

    Google Scholar 

  13. K.-H. Hoffmann, M. Niezgódka, Zheng Songmu: Existence and uniqueness of global solutions to an extended model of the dynamical development in shape memory alloys. Nonlinear Analysis: Theory, Methods & Applications, in print.

    Google Scholar 

  14. K.-H. Hoffmann, J. Sprekels: Phase transitions in shape memory alloys I: stability and optimal control. Preprint, Inst. of Mathematics, Univ. Augsburg.

    Google Scholar 

  15. K.-H. Hoffmann, Zheng Songmu: Uniqueness for structural phase transitions in shape memory alloys. Mathematical Methods in the Applied Sciences, 10 (1988), 145–151.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Kinderlehrer: Twinning of Crystals II. In: S.S. Antman et al., Eds, Metastability and Incompletely Posed Problems, Springer-Verlag, New York, 1987, 185–211.

    Chapter  Google Scholar 

  17. V.A. Likhachev, S.L. Kuz’min, Z.L. Kamenceva: Shape Memory Effect. Leningrad Univ. Press, Leningrad 1987. (in Russian)

    Google Scholar 

  18. V.A. Likhachev, A.E. Volkov, V.E. Shudegov: Continuum Defect Theory. Leningrad Univ. Press, Leningrad, 1986. (in Russian)

    Google Scholar 

  19. A.I. Lotkov, V.N. Grishkov: Ti-Ni alloy crystallographic structure and phase transformations. Izv. Vuzov, Fizika, 27 (1985), No. 6, 68–87.

    Google Scholar 

  20. I. Müller: A model for a body with shape-memory. Archive Rational Mechanics and Analysis, 70 (1979), 61–77.

    MATH  Google Scholar 

  21. I. Müller, K. Wilmański: A model for phase transition in pseudoelastic bodies. II Nuovo Cimento, 57B (1980), 283–318.

    Google Scholar 

  22. I. Müller, K. Wilmański: Memory alloys — phenomenology and Ersatzmodel. In: O. Brulin, R.K.T. Hsieh, Eds, Continuum Models for Discrete Systems 4, North-Holland, Amsterdam, 1981, 495–509.

    Google Scholar 

  23. M. Niezgódka: Mathematical Modelling of Phase Transitions. Inst. Mathematics, Univ. Augsburg, 1985.

    MATH  Google Scholar 

  24. M. Niezgódka, J. Sprekels: Existence of solutions for a mathematical model of structural phase transitions in shape memory alloys. Mathematical Methods in the Applied Sciences, 10 (1988), 197–223.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Niezgódka, J. Sprekels: Convergent numerical approximations of the thermomechanical phase transitions in shape memory alloys. Submitted to: Numerische Mathematik.

    Google Scholar 

  26. M. Niezgódka, Zheng Songmu, J. Sprekels: Global Solutions to a model of structural phase transitions in shape memory alloys. J. Math. Anal. Applications, 130 (1988), 39–54.

    Article  MATH  Google Scholar 

  27. Z. Nishiyama: Martensitic Transformation. Academic Press, New York, 1978.

    Google Scholar 

  28. J. Perkins, Ed.: Shape Memory Effects in Alloys. Plenum Press, New York, 1975.

    Google Scholar 

  29. L. Schetky: Shape memory alloys. Scientific American. No. 5 (1979), 74–82.

    Google Scholar 

  30. J. Sprekels: Global existence for thermomechanical processes with nonconvex free energies of Ginzburg-Landau form. J. Math. Anal. Applications, in print.

    Google Scholar 

  31. T. Tiihonen:. Inst. Mathematics, Univ. Augsburg, 1988.

    Google Scholar 

  32. Zheng Songmu: Global solutions to thermo-mechanical equations with nonconvex Landau-Ginzburg free energy. J. Appl. Math. Phys. (ZAMP), 40(1989), 111–127.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffmann, KH., Niezgódka, M. (1990). Shape Memory Materials: Mathematical Modelling and Numerical Simulations. In: Friemel, HJ., Müller-Schönberger, G., Schütt, A. (eds) Forum ’90 Wissenschaft und Technik. Informatik-Fachberichte, vol 259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76123-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76123-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53218-7

  • Online ISBN: 978-3-642-76123-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics