Skip to main content

Adaptive Byzantine Agreement in O(t) Phases

  • Conference paper

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 283))

Abstract

In order to achieve consistency on a value among m nodes involved in a distributed system, and thereby dealing with up to t faulty nodes, t<m, authenticated Byzantine agreement protocols (BAPs) are employed. The best of all authenticated BAPs, with respect to the worst case number of messages, needs O(t) phases and O(m+t 2) messages. As a disadvantage, this high number of messages is needed even in the faultless case. Adaptive Byzantine agreement protocols (ABAPs), a subclass of BAPs, minimize the number of messages for the faultless case (O(m)), at the expense of the fault cases, in order to reduce the expected communication overhead if faults occur rarely: If no faults occur, ABAPs do not need more messages than protocols not tolerating any faults. In contrast with usual BAPs, ABAPs are far from being studied exhaustively up to now.

In this paper, an ABAP is given which needs O(m 2 t) messages and up to 2t+3 phases for distributing one value consistently. In the faultless case, exactly m−1 messages and t+1 phases are needed. This is the first ABAP with a linear worst case number of phases.

It is sketched how to extend this protocol into one which achieves consistency on values of all m nodes, using O(m2t) messages and 2t+4 phases, and 2(m−l) messages and t+2 phases in the faultless case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Baum-Waidner: Byzantine Agreement Protocols with a Minimum Number of Messages in the Faultless Case; Internal Report 06/89, Universität Karlsruhe.

    Google Scholar 

  2. B. Baum-Waidner: A Consistency Condition Supporting Design and Verification of Byzantine Adaptive Agreement Protocols; proceedings of GI/ITG-Fachtagung, Kommunikation in Verteilten Systemen’91, IFB 267, Springer-Verlag, Berlin 1991, pp. 305–319.

    Google Scholar 

  3. W. Diffie, M. E. Hellman: New Directions in Cryptography; IEEE Transactions on Information Theory 22 /6 (1976) pp. 644–654.

    MathSciNet  MATH  Google Scholar 

  4. D. Dolev, H. R. Strong: Authenticated algorithms for Byzantine Agreement; SIAM J. Comp. 12 (1983), pp. 656–666.

    MathSciNet  MATH  Google Scholar 

  5. D. Dolev, R. Reischuk, H. R. Strong: Bounds on Information Exchange for Byzantine Agreement; Journal of the ACM, vol. 32, no. 1 (1985), pp. 191–204.

    MathSciNet  MATH  Google Scholar 

  6. D. Dolev, R. Reischuk, H. R. Strong: “Eventual” is Earlier than “Immediate”; Proc. 23. FoCS, 1982, pp. 196–203.

    Google Scholar 

  7. D. Dolev, R. Reischuk, H. R. Strong: Early Stopping in Byzantine Agreement; Journal of the ACM, vol. 37, no. 4 (1990), pp. 720–741.

    MathSciNet  MATH  Google Scholar 

  8. K. Echtle: Fault masking and sequence agreement by a voting protocol with low message number, 6th symposium on reliability in distributed software and database systems, conf. proc., IEEE, 1987, pp. 149–160.

    Google Scholar 

  9. K. Echtle: Distance Agreement Protocols; FTCS-19, conf. proc., IEEE, 1989, pp. 191–198.

    Google Scholar 

  10. P. Ezhilchelvan: Early stopping algorithms for distributed agreement under fail-stop, omission, and timing fault types; 6th symposium on reliabiliby software and database systems, conf. proc., IEEE, 1987, pp. 201–212.

    Google Scholar 

  11. F. DiGiandomenica, M. L. Guidotti, F. Grandoni, L. Simoncini: A graceful degradable algorithm for byzantine agreement; 6th symposium on reliability in distributed software and database systems, conf. proc. IEEE, 1987, pp. 188–200.

    Google Scholar 

  12. S. Goldwasser, S. Micali, R. L. Rivest: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks; SIAM J. Comput. 17 /2 (1988) pp. 281–308.

    MathSciNet  MATH  Google Scholar 

  13. L. Lamport, R. Shostak, M. Pease: The byzantine generals problem; Transactions on programming languages and systems, vol. 4, no. 3, acm, 1982, pp. 382–401.

    Google Scholar 

  14. M. Pease, R. Shostak, L. Lamport: Reaching agreement in the presence of faults; Journal of the acm, vol. 27, no. 2, 1980, pp. 228–234.

    Google Scholar 

  15. R. L. Rivest, A. Shamir, L. Adelman: A Method For Obtaining Digital Signatures and Public Key Cryptosystems; Communications of the ACM, vol. 21, no. 2, Feb. 1978, pp. 120–126.

    MathSciNet  MATH  Google Scholar 

  16. T. K. Srikanth, Sam Toueg: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms; Distributed Computing, Springer-Verlag, 1987 (2), pp. 80–94.

    Google Scholar 

  17. H. R. Strong, D. Dolev: Byzantine agreement; Compcon 83, conf. proc., IEEE, 1983, pp. 77–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baum-Waidner, B. (1991). Adaptive Byzantine Agreement in O(t) Phases. In: Cin, M.D., Hohl, W. (eds) Fault-Tolerant Computing Systems. Informatik-Fachberichte, vol 283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76930-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76930-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54545-3

  • Online ISBN: 978-3-642-76930-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics