Skip to main content

Efficient Recovery of Statically Redundant Systems

  • Conference paper
Book cover Fault-Tolerant Computing Systems

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 283))

  • 72 Accesses

Abstract

The reliability of modular (n-out-of-m)-systems can not only be improved by an increase in the number of replicates, but also by the provision of additional facilities for backward recovery. The latter approach combines static and dynamic redundancy, resulting in two main advantages: Firstly, more fault types are tolerated, even particular propagating faults which cause loss of the majority. Secondly, the expense of joint application of voting and backward recovery can be significantly reduced to be lower than the sum of expenses of separate implementation of the two techniques.

In this paper, we present a concept of an efficient recoverable (n-out-of-m)-system. Its efficiency is achieved by novel solutions in the particular design space induced by the combination of different techniques: • The establishment of recovery points is shifted into idle phases of any of the m redundant processors as far as possible. • The necessary synchronization is implemented by a special agreement protocol which only consists of the messages needed for fault masking anyway, provided that the communication system enables multicast (no reliable multicast required!). • Both relative and absolute tests contribute to fault detection. • Depending on the actual fault situation, the state information for recovery can be obtained from the established recovery points or a faultless replicate, if there is any. Moreover, the replicates may be rolled back independently or in common. These choices enable compromises between fault encapsulation and performance.

A brief evaluation turns out that our concept of recovery in (n-out-of-m)-systems can be more efficient than an increased number of replicates, because during normal operation the overhead of establishing recovery points can be reduced, and in the presence of faults additional fault types can be tolerated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

application process to be implemented in a fault-tolerant way

A1, …, Am :

replicates of the application process A (The replicates form static redundancy)

APS:

agreement protocol with signatures

fL :

maximum number of faulty links

fN :

maximum number of faulty nodes

fNL :

maximum number of faulty fault regions, consisting of one node and one link

fS :

maximum number of faulty storage locations for recovery points

fT :

maximum number of wrong absolute tests which do not detect a local fault

FSP:

fault masking and synchronization protocol

IL policy:

individual link for each node sending messages during protocol execution

λ:

load caused by other processes

λ1, …, λm :

load of nodes N1,…, Nm

L1, …, Lm :

links, providing a multicast property

M1, …, Mm :

multicast messages of FSP in an (n-out-of-m)-system

m:

number of replicates to form a statically redundant (n-out-of-m)-system

MVS:

majority-violating syndrome

MPS:

majority-preserving syndrome

n:

minimum number of faultless replicates in an (n-out-of-m)-system to enable majority voting

N1,…, Nm :

nodes where the replicates A1, …, Am of the application process A are allocated

Nm+1, …, N2·m :

nodes where the voters V1, …, Vm are allocated

r:

number of recovery points available at a single time point

rmin :

minimum number of recovery points, a node is excluded from establishment of recovery points after it has kept the token for the maximum time period tsingle

R1, …, Rr :

recovery points to provide dynamic redundancy for backward recovery

S1,…, Sr :

storage locations for the recovery points R1, …, Rr

SP:

synchonization protocol to determine the node which must establish a recovery point

τ:

additional portion of the execution time required for the establishment of recovery points

T1, …, Tm :

local absolute tests at nodes N1, …, Nm

token:

indication which node must establish the next recovery point

tmax :

maximum message delay

tsingle :

maximum time interval a single node is allowed to keep the token for establishment of recovery points

V1, …, Vm :

voters

References

  1. H. H. Abu-Amara: Fault-tolerant distributed algorithm for election in complete networks; Trans, computers, vol. 37, no. 4, IEEE, 1988, pp. 449–453.

    Google Scholar 

  2. S. J. Adams: Hardware assisted recovery from transient errors in redundant processing systems; FTCS-19, digest of papere, IEEE, 1989, pp. 512–519.

    Google Scholar 

  3. T. Anderson: A structured decision mechanism for diverse software; 5th symposium on reliability in distributed software and database systems, conf. proc., IEEE, 1986, pp. 125–129.

    Google Scholar 

  4. T. Anderson, P. A. Lee: Fault tolerance - principles and practice; Prentice-Hall, London, 1981.

    Google Scholar 

  5. Ö. Babaoglu, R. Drummond, P. Stephenson: The impact of communication network properties on reliable broadcast protocols; FTCS-16, digest of papers, IEEE, 1986, pp. 212–217.

    Google Scholar 

  6. F. Cristian, H. Aghili, R. Strong, D. Dolev: Atomic broadcast: from simple message diffusion to byzantine agreement; FTCS-15, digest of papers, IEEE, 1985, pp. 200–206.

    Google Scholar 

  7. A. Damm: Self-checking coverage of components of a distributed real-time system; Informatik-Fachberichte 214, Springer-Verlag, Heidelberg, 1989, pp. 308–319.

    Google Scholar 

  8. D. Denning: Cryptography and data security; Addison-Wesley, London, 1982.

    MATH  Google Scholar 

  9. F. Di Giandomenico, L. Strigini: Adjudicators for diverse-redundant components: survey and optimal adjudicator; IEI Nota Interna B4 - 11, 1990.

    Google Scholar 

  10. M. Dal Cin, K.-E. Großpietsch, M. Trautwein: Methoden der Fehlerdiagnose; Informatik-Spektrum, vol. 9, no, 2, Springer-Verlag, Heidelberg, 1986, pp. 82–94.

    Google Scholar 

  11. K. Echtle: Fehlermodellierung bei Simulation und Verifikation von Fehlertoleranz-Algorithmen für verteilte Systeme; Informatik-Fachberichte 83, Springer-Verlag, Heidelberg, 1984, pp. 73–88.

    Google Scholar 

  12. K. Echtle: Fehlermaskierung durch verteilte Systeme; Informatik-Fachberichte 121, Springer-Verlag, Heidelberg, 1986.

    Book  Google Scholar 

  13. K. Echtle: Fault-masking with reduced redundant communication; FTCS-16, digest of papers, IEEE, 1986, pp. 178–183.

    Google Scholar 

  14. K. Echtle: Fault tolerance based on time-staggered redundancy; Informatik-Fachberichte 147, Springer-Verlag, Heidelberg, 1987, pp. 348–361.

    Google Scholar 

  15. K. Echtle: Fault diagnosis by combination of absolute and relative tests; extended abstract, EWDC-1, Toulouse, 1989.

    Google Scholar 

  16. K. Echtle: Distance agreement protocols; FTCS-19, digest of papers, IEEE, 1989, pp. 191–198.

    Google Scholar 

  17. K. Echtle: Fehlertoleranzverfahren; Springer-Verlag, Heidelberg, 1990.

    Google Scholar 

  18. K. Echtle, W. Görke, M Marhöfen Zur Begriffsbildung bei der Beschreibung von Fehlertoleranz-Verfahren; Int. report 6/83, Fak. für Informatik, Univ. Karlsruhe, 1983.

    Google Scholar 

  19. K. Echtle, B. Hinz, T. Nikolov: On hardware fault detection by diverse software; FTSD-13, conf. proc., Bulgarian Academy of Science, 1990, pp. 362–367.

    Google Scholar 

  20. W. Görke: Fehlertolerante Rechensysteme; Oldenbourg-Verlag, 1989.

    Google Scholar 

  21. P. Gunningberg: Voting and redundancy management implemented by protocols in distributed systems; FTCS-13, digest of papers, IEEE, 1983, pp. 182–185.

    Google Scholar 

  22. K. H. Kim, H. O. Welch: Distributed execution of recovery blocks: an approach for uniform treatment of hardware and software faults in real-time applications; Trans. Computers, vol. 38, no. 5, IEEE, 1989, pp. 626–636.

    Google Scholar 

  23. N. Kanekawa, H. Maejima, H. Kato, H. Ihara: Dependable onboard computer systems with a new method - stepwise negoiting voting; FTCS-19, digest of papers, IEEE, 1989, pp. 13–19.

    Google Scholar 

  24. J.-C. Laprie, J. Arliat, C. Beounes, K. Kanoun, C. Hourtolle: Hardware- and software-fault tolerance: definition and analysis of architectural solutions; FTCS-17, digest of papers, IEEE, 1987, pp. 116–121.

    Google Scholar 

  25. J.-C. Laprie: Dependable computing and fault-tolerance: concepts and terminology; FTCS-15, digest of papers, IEEE, 1985, pp. 2–11.

    Google Scholar 

  26. L. Lamport, R. Shostak, M. Pease: The Byzantine generals problem; Trans, programming languages and systems, vol. 4, no. 3, acm, 1982, pp. 382–401.

    Google Scholar 

  27. E. Maehle: Architektur fehlertoleranter Systeme; Informationstechnik, it 3/88, Oldenbourg-Verlag, 1988, pp. 169–179.

    Google Scholar 

  28. G. H. MacEwen, D. B. Skillicorn: Using higher-order logic for modular specification of real-time distributed systems; Lecture Notes in Computer Science 331, Springer-Verlag, Heidelberg, 1988, pp. 36–66.

    Google Scholar 

  29. F. J. Meyer, D. K. Pradhan: Consensus with Dual Failure Modes; FTCS-17, digest of papers, IEEE, 1987, pp. 48–54.

    Google Scholar 

  30. N. Natarajan, J. Tang: Synchronization of redundant computation in a distributed system; 6th symposium on reliability in distributed software and database systems, conf. proc., IEEE, 1987, pp. 139–148.

    Google Scholar 

  31. A. Niedermaier: Versteckte Rücksetzpunkterstellung in statisch redundanten Systemen; Int. report 8/90, Fak. für Informatik, Univ. Karlsruhe, 1990.

    Google Scholar 

  32. B. Randell: Reliability issues in computing system design; Computer surveys, vol.10, no.2, acm, 1978, pp. 123 - 135.

    Google Scholar 

  33. B. Randell: System design and structuring; The Computer Journal, vol 29, no. 4, Cambridge Univ. Press, 1986, pp. 300–306.

    Google Scholar 

  34. R. Reishuk: Konsistenz und Fehlertoleranz in Verteilten Systemen - Das Problem der Byzantinischen Generäle; Informatik-Fachberichte 156, Springer-Verlag, Heid., 1987, pp. 65–81.

    Google Scholar 

  35. J. Reisingen Failure modes and failure characteristics of a TDMA driven Ethernet; extended abstract, EWDC-2, Firenze, 1990.

    Google Scholar 

  36. M. Sloman, J. Kramen Verteilte Systeme und Rechnernetze; Carl Hanser-Verlag, München, und Prentice Hall, Englewood Cliffs, 1989.

    Google Scholar 

  37. ER. Strong, D. Dolev: Byzantine agreement; Compcon 83, conf. proc., IEEE, 1983, pp. 77–81.

    Google Scholar 

  38. D. Wybranietz: Broadcast/Multicast; Informatik-Spektrum, vol. 9, no. 2, Springer-Verlag, Heidelberg, 1986, pp. 130–132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Echtle, K., Niedermaier, A. (1991). Efficient Recovery of Statically Redundant Systems. In: Cin, M.D., Hohl, W. (eds) Fault-Tolerant Computing Systems. Informatik-Fachberichte, vol 283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76930-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76930-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54545-3

  • Online ISBN: 978-3-642-76930-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics