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A bstract 

The work we present in this paper is sett led within the field of inte ll igent he lp 
systems. Inte ll igent help systems aim at supporting users of app li cation systems by 
the achievements of qualified experts. In order to provide such qualified support 
ou r app roach is based on the integration of p lan generation and plan recogn ition 
components. Plan recogn ition in this context serves to identify the users goals and 
so forms the basis for an active use r support. The planning component dynamicall y 
generates p lans which are proposed for the user to reach her goal. We introduce 

a logic-based approach where plan generat ion and plan recognition is done on a 
common logical basis and both components work in some kind of cross-talk. 
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1 Introduction 

Intelligent help systems aim at supporting users of application systems by the achieve­
ments of qualified experts, e.g., cf. [NWWng], [HKN+88J . This support can be consid­
erably'improved if help systems are provided with plan recognition and plan generation 
components . In this context Plan recognition serves to identify the users goals and thus 
forms the basis for providing active help (cf. [Fin83], [DGH87]). Plan generation is an 
essential prerequisite for supporting the user with plans to reach his goals (cf. [Lur88], 
[Bre90], [Heg91]). 
Whereas previous approaches were working with separated plan recognition and plan 
generation components it is our aim to realize some kind of cross-talk between both: Plan 
recognition and plan generation components work in integrated mutual cooperation. We 
distinguish between three different kinds of cross-talk which will be introduced in section 
2. 
Plan recognition as well as planning will be done in a deductive way and will be based on 
a common logical formalism. A brief sketch of the underlying logic will be given in section 
3. Finally, sections 4 and 5 show by means of short examples how plan recognition, plan 
generation and plan reuse can be realized in an appropriate deductive framework based 
on this logic. 

2 Architecture and Cross-Talk Modes 

We intend to implement a system called PHJ! (see figure 1) that constitutes the kernel 
of an active intelligent help system, An Application Interface provides as input observed 
actions and goals. On the other hand, it receives recognized, generated, and optimal 
plans . 

, 
Plan Recognition Component 

.. IAPPlication Interface I--------~ observed actions, 
goals 

Plan Generation Component 

Figure 1: The PHI Architecture 

lThe PHI project is suppor ted by the BMFT (Bonn) under Grant ITW 9000 8. 

3 



Plan recognition and plan generation use a common knowledge base containing planning 
knowledge and state information as well as user and domain specific knowledge. 
One main point of interest in our research concentrates on realizing the cross-talk between 
plan recognition and plan generation. This cross-talk in particular presupposes a common 
logical representation formalism for all kinds of knowledge. We distinguish between three 
different cross-talk modes: 

• First cross-talk mode 
The plan recognizer works with plans produced by the plan generator. The basis 
for generation consists of already observed actions and standard assumptions about 
goals, that typically occur in the domain considered. The user-specific characteris­
tics as designated in the user model also playa role in the generation process. If a 
set of hypothetical plans has been produced by the plan generator, it is made avail­
able to the plan recognizer. If the new observed actions cannot be mapped on the 
hypothetical plans or standard assumptions change, the plan generator is activated 
again and the plan recognizer is supplied with a set of hypotheses that covers the 
increased number of observed actions. The plan recognition process is successfully 
completed when a plan has been found which connects the observed actions in such 
a way that they lead to one of the assumed goals. 

• Second cross-talk mode 
The main topics in this mode are the identification of suboptimal plans and the gen­
eration of optimal plans. The plan recognizer employs given domain-specific subop­
timal plans which typically show up. If after a few observed actions a suboptimal 
plan is assumed by the plan recognizer, these actions and the goal corresponding to 
the plan are given to the plan generator. The plan generator then produces one or 
more optimal plans for this goal and provides them to the application system. 

• Third cross-talk mode 
The third mode is an example for the application of our approach to plan monitoring. 
For a given goal, the plan generator creates a plan, which is passed to the user. If the 
user does not execute the plan as expected, the plan recognizer determines the goal 
pursued with the changed plan. The plan monitoring component then analyses both 
existing goals in order to determine inconsistency, subsumption or compatibility of 
the goals. 

3 Formalization of the Application Domain 

Since our work is settled within the context of intelligent help systems where users have 
to be supported in applying software, the planning domain of our system has to be based 
on some kind of command language. As a first example domain we therefore use a subset 
of the operating system UNIX, namely the UNIX mail system, which is of manageable 
size and additionally provides a great variety in building and recognizing plans. 
The deductive plan recognition and plan generation formalisms are based on a many­
sorted modal temporal logic (cf. [RP86], [Kro87], [HaI89]). Besides the temporal operators 
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O( next), (; (sometimes), 0 (always), and; (chop), assignments and control structures are 
provided following imperative programming languages. The idea behind using those 
programming language constructs is that plans and in particular abstract plans which 
subsume a variety of concrete ones can in general be viewed as programs (cf. [MW86], 
[Bib86]). 
The mail commands (e.g. read, delete, quit) are axiomatized as basic actions in the fol­
lowing form: 

precondition /\ EX( command) - 0 effect. 

The read-command, for example, is defined according to its effect of changing the flag of 
a current mail object: 

\Ix : maiLobj ect 

[--,flag(x) = "d" /\ EX(read(x)) - Oflag(x) = "r"], 

where EX( c) means: "Execution of command c". 
The control structures are the following: 

• ; (chop operator) 
The formula 1jJ; 'lj; means that IjJ holds before 'lj; thus denoting the sequential compo­
sition of both subformulas. 

• if ... then ... else (conditional) 
The formula if ¢ then ¢1 else ¢2 stands for [¢ - ¢1]/\ [--,¢ - ¢2]' 

• while ... do ... od (while - loop) 
The while-operator is axiomatized according to 

[while IjJ do 'lj; od; a] +-+ [if IjJ then 'lj;; [while IjJ do 'lj; od; a] else a]. 

Certain formulas of our temporal logic are viewed as plans. Those plan formulas are 

• all formulas EX(c), where c is a term of type command_name; 

• assignments of form a := t, where a is a local variable and t is a term; 

• all formulas 1jJ; 'lj; where IjJ and 'lj; are plan formulas; 

• all formulas if IjJ then 'lj;1 else 'lj;2, where 'lj;1 and 'lj;2 are plan formulas and IjJ is a 
formula not containing any temporal operator or basic plan formula; 

• all formulas while IjJ do 'lj; od ; a, where 'lj; and a are plan formulas and IjJ is a 
formula not containing any temporal operator or basic plan formula; 

• all formulas (; 1jJ, where IjJ is a plan formula; 

• all formulas IjJ V 'lj; where IjJ and 'lj; are plan formulas. 
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4 Plan Recognition 

The plan recognition component differs in two aspects from the systems mentioned in 
e.g.[FLS85], [SC85], [Hec87], [HKN+88]: It works deductively and communicates with a 
pIal} generation component in different cross-talk modes (cf. figure 1). It will work incre­
mentally and non-monotonically (first approaches are described in [Hec91] and [Mer91]). 
During the recognition process, which is described below in more detail, the following 
functionality must be realized: 

Basic Plan Recognition: Identify those plans which contain the observed action. 

Test against Current State: Test whether the observed action fits into the time struc­
ture. 

Constraint Evaluation: Test whether all constraints are fulfilled . 

Recognized plans, plan hypotheses, and the recognition history are stored in the knowl­
edge base to be used later. 

The plan recognition process is an 

iterative process for selecting plan hypotheses which account for th e observed 

actions. 

Before describing the plan recognition procedure, we first consider some properties of its 
input: the plan hypotheses and the observed actions. 
In general, the plan hypotheses are no concrete action sequences, but contain several 
degrees of abstraction: 

1. The commands may not be completely instantiated, I.e., they contain formal pa­
rameters instead of an actual argument. 

2. The temporal structure of the plan hypotheses may be ambiguous. They may 
contain subformulas like OEX(a) which means "execute command a sometimes 

within the duration of the plan hypothesis currently considered." 

3. Nondeterministic choices like EX(a) V EX(b) can appear which mean "execute 
command a or command b". 

4. Besides actual domain commands, a plan hypothesis may also contain abstract com-

mands like readmails (cf. example below). 

Observed single actions are described by formulas like EX (a), whereas action sequences 
are expressed by EX(a1); EX(a2); ... ; EX(an ). 

At the beginning of the process a set of possible plan hypotheses 6 0 is provided by the 
plan generation component. Together with the observed action EX (Command1) the plan 
recognizer determines in the next state the set of hypotheses 6 1 so that every member 

of 6 1 contains the observed action, or more formally: 
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(f- PR means that plan recognition specific deductions are used). If a sequence of obser­
vations EX(Commandl ), .. . , EX (Comman~n) must be processed, the recognition process 

can be abstractly described , as follows (ot means that the command is executed in the 

i-th state): 

6. 0 U {EX (Commandd} f- PR 6. 1 

During this iterative process: 

• completely recognized plans can be deleted from 6. i , and 

• if no hypothesis can explain the observed actions, an adapted set 6. 0 of generated 
possible hypotheses must be delivered by the generation component. 

Assume that until now an action sequence lP = EX( al); ... ; EX( an-I) was observed and 
that each of the plan hypotheses in 6.n- 1 = {PI, P2 , ... , Pm} could explain those obser­
vations. Let an be the next observed action. Then the plan recognition procedure works 
as follows: It selects those hypotheses for which the formula lP; EX( an) constitutes a valid 
starting sequence of actions. For each such Pi this means: 

(a) The formula lP' = EX(aI); ... ; EX(an) contains the same actions as Pi wherever the 
hypothesis demands these actions to be executed at a certain time and a parameter 
binding compatible to the one demanded in Pi' 

(b) There is a suitable concrete domain command in lP' wherever the plan hypothesis 
contains an abstract command. 

(c) For every nondeterministic choice in Pi, lP' contains exactly one of the alternative 
actions. 

(d) lP' induces a temporal structure compatible wi th the initial part of Pi. 

The process taking place at each step of the recognition process can be described for each 
plan hypothesis P E 6. i as follows: Let EX ( Commandi ) be the formula describing the 
last observed action. Then the plan recognizer tries to derive a new hypothesis P' which 
will become a member of 6. i +1 : 

where P and pI are related in the following way: There is a way to split P into an initial 
segment Initp, a terminating segment Restp and a segment Midp of commands describing 
just that part of P currently considered. Informally, Initp is that part of the hypothesis 
already recognized. It exactly corresponds to the sequence of observed actions of former 
recognition steps, whereas Restp is that part which will be considered in the next step 
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if the current recognition step is successful, i.e., if Midp and EX (Command i ) fulfill the 
requirements (a) - (d) listed above. Thus we have 

P = Initp; Midp; Restp 

p 1 = Initp; EX(commandi ); Restpl 

where Restp l results from Restp by substituting formal parameters bound in the last step. 
If Restp l becomes empty, the plan corresponding to this hypothesis was successfully rec­
ognized. 

The potential of the plan recognition capabilities with a temporal logic described ab­
stractly above is explained through an example. The following plans are used as hypothe­
ses: 

\largl: mbox,arg2: integer [EX(Planl(argl ,arg2)) +--+ 

EX (Jolder( arg1)); 

OEX(showmails()); 

o EX (readmails( arg2)); 

EX(d(arg2)); 

EX(Jolder(['#'])) V EX(quitO)] 

\largl : mbox, arg2 : integer [EX(Plan2(argl, arg2)) +--+ 

EX (Jolder( arg 1)); 
o EX (showmails ()); 

o EX (readmails( arg2)); 

EX(quitO)] 

The definition of the abstractions between commands is expressed by: 

EX (J(['*'])) ~ EX(showmailsO) 

EX(h([])) ~ EX(showmailsO) 

\Ix : integer .EX(read(x)) ~ EX(readmails(x)) 

\Ix : integer.EX(next(x)) ~ EX(readmails(x)) 

The following sequence of commands is observed: 

EX (Jolder( [UnansweredMails])) 

EX(h([])) 

EX (read([ 7])) 

EX( d([7])) 

EX(Jolder(['#'])) 
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Assume that the initial set ~o of plan hypotheses contains Planl and Plan2 . The first 
observation EX (folder([ UnansweredMails])) fulfills the constraint (a) for both hypotheses, 
(b) - (d) need not be considered. Thus, after the first step we have: 

InitPlanll 

MidPlanl1 

RestPlanll 

RestPlan21 

{Pla~11, Plan21} 

InitPlan21 = EX (folder([ UnansweredMails])) 

MidPlan21 = 0 EX (showmailsO) 

o EX (readmails(arg2)) ; ... ; EX (folderC['#'])) V EX(quitO) 

o EX(readmails(arg2)); EX(quitO) 

The description of the second observed command is OEX(h([])). None of the hypotheses 
in ~1 contains a concrete action in its Mid part, but the abstract command showmails. 
The command abstraction axioms tell us that h([ }) is a suitable instance for this com­
mand, so that (b) holds for Planl 1 and Plan21. While (c) plays no role, we see that the 
temporal structure of OEX(h([ J)) is compatible with those of MidPlanl1 and MidPlan21 , 
and (d) holds. 2 Thus 

InitPlan1 2 

MidPlan12 

RestPlan12 

RestPlan22 

{Plan1 2, Plan22} 

InitPlan22 = EX(folder([UnansweredMails]));EX(h([])) 

MidPlan22 = 0 EX(readmails(arg2)) 

EX (d([arg2])); EX (Jolder(['#'J)) V EX(quitO) 

EX( quitO) 

Having skipped one step where 02EX(read( [7])) was observed, we get OSEX(d([7])). 
Plan2 s is no longer a valid hypothesis because (a) is not fulfilled. So we get 

~4 
InitPlan14 

MidPlan14 

RestPlan14 

{Plan1 4 } 

EX(folder([UnansweredMails])); EX(h([ ])); EX(read([7])); EX(d([7])) 

EX(folder(['#'])) V EX(quitO) 

o 
In the final step, the observation of 0 4 EX (folder(['#'])) leads to a successful recognition 
of the first hypothesis because RestPlan15 contains no more actions. Thus, 

~5 = EX (folder([UnansweredMails])); EX(h([ ])); EX(read([7])); 

EX(d([7])); EX (folder(['#'])) 

is a concrete instance of our initial hypothesis Planl and the recognition process succeeds. 

2If it is allowed to do some action sometimes, it is feasible to execute it in the next state. 
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5 Plan Generation 

The plan generation facility consists of four different modules and a local knowledge base. 
The deductive planner takes formal logic plan specifications as its input and automatically 
g;enerates abstract plans from them. These plans are represented by plan formulas as 
described in section 3. The generation of plans is guided by strategies and heuristics 
which have succesfully been developed for a deductive program synthesis system [Biu88]. 
To produce concrete and executable plans, the abstract ones are forwarded to a compiler 
module which incrementally generates sequences of basic operations. These sequences 
constitute the output of the plan generation facility in the second cross-talk mode. The 
coordinator module (see figure 1) analyzes user inputs, actions, and goals and activates 
the planner to completely generate a new plan or it activates the reuse component. This 
module enables the system to reuse previously generated plans and implements planning 
from second principles. 
Subsequently, we focus on the deductive planner and its integrated reuse facility as the 
main parts of the plan generation system and explain how the generation and reuse of 
plans proceeds. 

Deductive Planning 

The deductive plan generator starts from a formal plan specification given as a formula 
of modal temporal logic. This specification formula contains as a subformula an atom of 
the form EX(z), where z is an existentially quantified variable of type command-name. 
Generating a plan from such a specification means to first replace the variable z by an 
appropriate skolem term, e.g. , plan(x) and then produce an axiom Vx(EX(plan(x)) f--t ¢;) 
, where ¢; is a modal plan formula as described in section 3. It additionally must have the 
property that replacing EX (z) by ¢; in the specification formula makes this formula true, 
i.e., the plan ¢; to be generated has to satisfy its specification. To achieve this, the plan 
formula ¢; is derived from the specification formula using special plan generation rules. 
These rules are partly borrowed from a set of transformation rules initially developed for 
the deductive synthesis of programs in [Biu91] and adapted to the solution of planning 
problems in [Biu90]. 
To give an idea of how deductive planning works in this context we give a short example. 
Suppose we want to generate a plan for reaching the goal: "Read and delete all mails from 

sender otto". This plan specification is represented by the following specification formula: 

\1m : mbox :Jz : command_name 

[EX(z) --+ \Ix: maiLobject [member(x,m) i\ sender(x) = "otto" i\ -,flag(x) = "d" 

--+ 0 [Jlag(x) = "r" i\ 0 flag(x) = "d" ]]] 

Skolemization of this formula replaces z by the term plan(m), where plan is supposed to 
be a new function symbol, and yields the formula 
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\:1m : mbox [EX(plan(m)) 

~ \:Ix: maiLobject [member(x,m) 1\ sender(x) = "otto" 1\ -,flag(x) = "d" 

~ 0 [jlag(x) = "r" 1\ 0 flag(x) = "d" III 

In order to obtain an axiom \:1m : mbox (EX(plan(m)) +--+ rjJ) defining the specified plan 
two tasks have to be performed. The first one is deriving a subplan plan'(x) which for 
any of the specified mail objects reaches the sub goals of reading and deleting it. The 
second task is to find an appropriate control structure (in our case a while loop) which 
guarantees that plan'(x) will be carried out for each of the described mail objects. 
We will start with the first task and show how this part of the final plan can be derived 
using a widely extended version of the so-called implication rule (d. [Biu91]) together 
with the following axioms which are supposed to be available in our knowledge base: 

Axl: OrjJ ~ 0 rjJ 

Ax2: O( rjJ 1\ 'ljJ) +--+ (OrjJ 1\ 0'ljJ ) 

Ax3: 00 rjJ +--+ 0 OrjJ 

Ax4: \:Ix : maiLobj ect 
[-,flag(x) = "d" 1\ EX(read(x)) ~ Oflag(x) = "r" 1 

Ax5: \:Ix : maiLobj ect 
[-,flag(x) = "d" 1\ EX(delete(x)) ~ Oflag(x) = "d" 1 

Ax4 and Ax5 describe the read and delete actions, respectively. 

Let C, L, M, and Ki(1 ~ i ~ n) be formulas. The implication rule then reads: 

IMPL: C ~ (uL 1\ M) 
c ~ (uKl 1\ M), ... , C ~ (uKn 1\ M) 

provided there exists an axiom (I{l 1\ . .. 1\ Kn) ~ L in the knowledge base. According to 
the underlying modal logic the following rule derived from IMPL will also be used: 

NEXTJMPL: C ~ (OuL 1\ M) 
C ~ (OuK l 1\ M), ... , c ~ (OuKn 1\ M) 

The implication rule is used to replace a (sub )goal in the plan specification by new subgoals 
which are sufficient for it. 

In order to derive a plan formula for our subplan plan'(x) from its specification 

\:Ix : maiLobject [EX(plan'(x)) 
~ [-,flag(x) = "d" ~ 0 [(Jlag(x) = "r" 1\ 0 flag(x) = "d") III 

we start with 

[-,flag(x) = "d" ~ 0 [jlag(x) = "r" 1\ 0 flag(x) = "d" II 
and apply the implication rule together with axiom Axl, i.e., we replace the conclusion 
by 
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O[flag(x) = "r" A 0 flag(x) = "d"] obtaining 

[-,flag(x) = "d" -+ O[flag(x) = "r" A 0 flag(x) = "d" II 
as a new formula. 

According to Ax2 this formula can be equivalently transformed into 

[-,flag(x) = "d" -+ 0 flag(x) = "r" A 00 flag(x) = "d" ]. 

Now the implication rule together with axiom Ax4 is applied in order to replace the 
subgoal 

Oflag(x) = "r" by the plan formula EX(read(x)). 

We obtain two new formulas: 

<PI : -,flag(x) = "d" -+ EX(read(x)) A 00 flag(x) = "d" 
and 

<P2 : -,flag( x) = "d" -+ -,flag( x) = "d" A 00 flag( x) = "d" . 

The formula <PI is now transformed in order to even obtain a plan formula for the second 
subgoal OOflag(x) = "d" . 
First of all <PI can, according to Ax3, be replaced by: 

-,flag(x) = "d" -+ EX(read(x)) A 0 Oflag(x) = "d" . 

Now the implication rule is applied with Ax1 to get 

-,flag(x) = "d" -+ EX(read(x)) A OOflag(x) = "d" 

and finally applying that rule with Ax5 yields: 

-,flag(x) = "d" -+ EX(read(x)) A OEX(delete(x)) . 

Applying rule NEXT .JMPL in a final step we again obtain two new formulas: 

<P3 : -,flag(x) = "d" -+ EX(read(x)) A OEX(delete(x)) 
and 

<P4 : -,flag(x) = "d" -+ EX(read(x)) A O-,flag( x) = "d" . 

From <P3 the following plan formula can be derived: 

<P3 : -,flag( x) = "d" -+ EX(read(x)); EX(delete(x)). 

Hence, we obtain 

Vx : maiLobject [EX(plan'(x)) ~ [-,flag(x) = "d" -+ EX(read(x));EX(delete(x))]] 

as a defining axiom for the specified plan plan'(x). 
The formulas <P2 and <P4 which also have been derived during the generation process 
describe two properties of the new plan: 

Vx : maiLobject[EX(plan'(x)) -+ [-,flag( x) = "d" 
-+ [-,flag(x) = "d" A 00 flag(x) = "d" ] 
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and 

\Ix : maiLobject[EX(plan'(x)) -+ [.flag(x) = "d" 
-+ [EX(read(x)) 1\ O·flag(x) = "d" II 

They represent so-called verification fo rmulas that have to be proved in order to guarantee 
that the generated plan indeed satisfies its specification. This proof can be easily done 
using the definition of plan'(x) above and an axiom asserting the read- and delete-flags 
to be different. 
Selecting the appropriate axioms and rules is essential for the plan generation process to 
succeed. Additionally, this selection in particular influences the degree of abstraction the 
generated plan has. If, for example, we had decided to use instead of axioms Ax4 and 
Ax5 the weaker versions Ax4' and Ax5' with 

Ax4': \Ix : maiLobject 
[·flag(x) = "d" 1\ EX(read(x)) -+ 0 flag(x) = "r" 1 

Ax5': \Ix : maiLobject 
[·flag(x) = "d" 1\ EX(delete(x)) -+ 0 flag(x) = "d"], 

then the generated plan definition would have read: 

\Ix : maiLobject[EX(plan'(x) ) f--+ [.flag(x) = "d" -+ 

o EX(read(x)) j 0 EX(delet e(x)) 11 

To finally end up with the plan generation process starting from our initial specification 
of plan: 

\1m : mbox [EX(plan(m))-+ 

\Ix: maiLobject [member(x,m) 1\ sender(x) = "otto" 1\ .flag(x) = "d" 

-+ 0 [flag(x) = "r" 1\ 0 flag(x) = "d" 111 

we have to introduce a while-loop in order to work through the list of all mail objects 
from sender "otto" and carry out t he generated subplan plan'(x) for each of its elements. 
Finally we obtain the following plan definition: 

\1m : mbox [EX(plan(m)) f--+ [a:= from(sender, "otto", m)j 

while .Empty( a) do 
b:= first(a)j EX(plan'(b))j a:= tail(a) od] 1 

Plan Reuse 

A plan as generated in section 5 represents problem solving knowledge that was used by 
the planning system to achieve a given goal state from a particular initial state. Therefore, 
we develop a reuse mechanism that enables the planner to save generated plans for a later 
reuse and thus extend the problem solving knowledge. The planning knowledge can now 
be applied to find out whether a problem can be solved by adapting an already existing 
plan. The architecture of the reuse component is based on a 4-phase model (d. [Koh91]) 
describing the reuse process: 
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Problem 
description: 
P=[SO,SGJ • 
So • Initial state 
SG • goal state 

.. 
Plan Library 

Determination 

Interpretation: 
RI=inta(R ,SO,SG) 
a : Object mapping 

Refitting: 
~ R'I=refitK(RI) 

K: Planning knowledge 

Plan Reuse System 

Figure 2: A 4-Phase Model of Plan Reuse 

~ Problem 
solution: 
R'I 

To explain how the reuse process works we reuse the plan that was generated in the 
preceding example to solve the new planning task: "Read all mails from otto, save them 
in the folder with the sender's name, and then delete the mails". It is represented by the 
following specification formula: 

(P :) Vm,n: 
[EX(z) 

mbox ::Jz : command_name 
--t Vx : maiLobject 
[member(x,m) Asender(x) = "otto" A'flag(x) = "d" 
A folder(n) = "otto" 
--t 0 [Jlag(x) = "r" A 0 [Jlag(x) = "*" A m ember(x, n) 

AO flag(x) = "d" llll 

Determination of a Reuseable Plan Entry 

To solve the planning problem, a stored plan entry from the plan library is determined. 
We presuppose that the plan library does not contain (user- )predefined plan entries, but is 
built up using information provided by the deductive plan generation component, e.g., the 
generalized specification formula, the generalized plan schema, the verification formulas 
for the plan. The determination process mainly concentrates on a syntactical comparison 
of the current specification formula P with the generalized specification formulas R oc­
curring in the various plan entries. In our example the determination process chooses the 
following generalized plan specification R from the plan library as a hypothesis on which 
a solution for P can be based upon: 

(R :) Vu : mbox Vs: sender 
[EX(v) --t 

::Jv : command_name 
Vw : maiLobject 
[member(w,u) A sender(w) = sA 'flag(w) = "d" 
--t 0 [Jlag(w) = "r" A 0 flag(w) = "d" III 
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Interpretation of the Plan Entry in the Current Planning Situation 

Now R has to be interpreted in the current planning situation by matching the two 
formulas. The main problem here is to find the correct mapping a of objects in P to the 
variables in R to generate a correct instantiation of R. Obviously, an optimal solution 
can be obtalned by applying the substitution {v f- Z, U f- m, W f- X, Sf-otto} to R 
leading to its instantiation: 

'1m : mbox :Jz: command_name 
[EX(z) --+ 'Ix : maiLobject 

[member(x,m) /\ sender(x) = "otto" /\ -,flag(x) = "d" 
--+ 0 [flag(x) = "r" /\ 0 flag(x) = "d" ]]] 

Refitting of the Interpreted Plan Entry 

By completing the instantiation phase in our example we obtain a fully instantiated plan 
specification Rr which we can now compare with the current plan specification P to 
evaluate whether we already obtained a solution. In general, we will be confronted with 
the problem that the plan specifications differ in the description of the initial or the goal 
state, thus requiring a refitting of the plan corresponding to Rr. In our example a number 
of formulas in P have no corresponding formula in Rr, meaning that the plan we want 
to choose for reuse will only partially solve the current goal. Thus, we obtain a formula 
R'r which contains the generated plan plan'(x), but also an open subgoal for which the 
planner has to be activated again: 

(R'r :) '1m, n : mbox :Jz : command_name 
[EX(z) --+ 'Ix : maiLobject 

[member(x,m) /\ sender(x) = "otto" /\ -,flag(x) = "d" 
/\ folder(n) = "otto" 
--+ EX(read(x)); 0 flag(x) = "*" /\ member(x, n); EX(delete(x))]] 

This specification describes that the plan to be reused has to be modified in such a way, 
that ari additional condition has to hold in the initial state and that aI1 addi tional action 
has to be included. 

Updating the Plan Library 

The reuse process finishes with the update of the plan library. The decision whether a 
plan is "worth" storing in the plan library depends on its similarity to already stored 
plans. A new plan entry is built up from the specification formula for the plan, the plan 
itself, the verification conditions for the plan, and the transformation rules used in the 
generation process. Furthermore, an abstraction process (d. section 4) will be applied 
leading to the storage of abstract plan entries. 
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