
Deutsches
Forschungszentrum
fur Kunstliche
Intelligenz GmbH

Research
Report

RR-91-26

Integrated Plan Generation and Recognition

- A Logic-Based Approach -

M. Bauer, S. Biundo, D. Dengler, M. Hecking,
J. Koehler, G. Merziger

August 1991

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr Kunstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrucken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft , GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science . The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world . The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Dr. Dr. D. Ruland
Director

Integrated Plan Generation and Recognition
- A Logic-Based Approach -

M. Bauer, S. Biundo, D. Dengler, M. Heeking, J. Koehler, G. Merziger

DFKI-RR-91-26

The paper will be published in the Proceedings of the '4. Internationaler GI-KongreB
Wissensbasierte Systeme', Springer-Verlag, 1991.

This work has been supported by a grant from The Federal Ministry for Research and
Technology (FKZ ITW-9000 8) .

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche .lntelligenz.

Integrated Plan Generation and Recognition
- A Logic-Based Approach -

M. Bauer, S. Biundo, D. Dengler, M. Hecking, J. Koehler, G. Merziger
Deutsches Forschungszentrum fur Kunstliche Intelligenz GmbH

Stuhlsatzenhausweg 3
W-6600 Saarbrucken 11

e-mail: <lastname> @dfkLuni-sb.de

A bstract

The work we present in this paper is sett led within the field of inte ll igent he lp
systems. Inte ll igent help systems aim at supporting users of app li cation systems by
the achievements of qualified experts. In order to provide such qualified support
ou r app roach is based on the integration of p lan generation and plan recogn ition
components. Plan recogn ition in this context serves to identify the users goals and
so forms the basis for an active use r support. The planning component dynamicall y
generates p lans which are proposed for the user to reach her goal. We introduce

a logic-based approach where plan generat ion and plan recognition is done on a
common logical basis and both components work in some kind of cross-talk.

1

Contents

1 Introduction 3

2 Architecture and Cross-Talk Modes 3

3 Formalization of the Application Domain 4

4 Plan Recognition 6

5 Plan Generation 10

2

1 Introduction

Intelligent help systems aim at supporting users of application systems by the achieve­
ments of qualified experts, e.g., cf. [NWWng], [HKN+88J . This support can be consid­
erably'improved if help systems are provided with plan recognition and plan generation
components . In this context Plan recognition serves to identify the users goals and thus
forms the basis for providing active help (cf. [Fin83], [DGH87]). Plan generation is an
essential prerequisite for supporting the user with plans to reach his goals (cf. [Lur88],
[Bre90], [Heg91]).
Whereas previous approaches were working with separated plan recognition and plan
generation components it is our aim to realize some kind of cross-talk between both: Plan
recognition and plan generation components work in integrated mutual cooperation. We
distinguish between three different kinds of cross-talk which will be introduced in section
2.
Plan recognition as well as planning will be done in a deductive way and will be based on
a common logical formalism. A brief sketch of the underlying logic will be given in section
3. Finally, sections 4 and 5 show by means of short examples how plan recognition, plan
generation and plan reuse can be realized in an appropriate deductive framework based
on this logic.

2 Architecture and Cross-Talk Modes

We intend to implement a system called PHJ! (see figure 1) that constitutes the kernel
of an active intelligent help system, An Application Interface provides as input observed
actions and goals. On the other hand, it receives recognized, generated, and optimal
plans .

,
Plan Recognition Component

.. IAPPlication Interface I--------~ observed actions,
goals

Plan Generation Component

Figure 1: The PHI Architecture

lThe PHI project is suppor ted by the BMFT (Bonn) under Grant ITW 9000 8.

3

Plan recognition and plan generation use a common knowledge base containing planning
knowledge and state information as well as user and domain specific knowledge.
One main point of interest in our research concentrates on realizing the cross-talk between
plan recognition and plan generation. This cross-talk in particular presupposes a common
logical representation formalism for all kinds of knowledge. We distinguish between three
different cross-talk modes:

• First cross-talk mode
The plan recognizer works with plans produced by the plan generator. The basis
for generation consists of already observed actions and standard assumptions about
goals, that typically occur in the domain considered. The user-specific characteris­
tics as designated in the user model also playa role in the generation process. If a
set of hypothetical plans has been produced by the plan generator, it is made avail­
able to the plan recognizer. If the new observed actions cannot be mapped on the
hypothetical plans or standard assumptions change, the plan generator is activated
again and the plan recognizer is supplied with a set of hypotheses that covers the
increased number of observed actions. The plan recognition process is successfully
completed when a plan has been found which connects the observed actions in such
a way that they lead to one of the assumed goals.

• Second cross-talk mode
The main topics in this mode are the identification of suboptimal plans and the gen­
eration of optimal plans. The plan recognizer employs given domain-specific subop­
timal plans which typically show up. If after a few observed actions a suboptimal
plan is assumed by the plan recognizer, these actions and the goal corresponding to
the plan are given to the plan generator. The plan generator then produces one or
more optimal plans for this goal and provides them to the application system.

• Third cross-talk mode
The third mode is an example for the application of our approach to plan monitoring.
For a given goal, the plan generator creates a plan, which is passed to the user. If the
user does not execute the plan as expected, the plan recognizer determines the goal
pursued with the changed plan. The plan monitoring component then analyses both
existing goals in order to determine inconsistency, subsumption or compatibility of
the goals.

3 Formalization of the Application Domain

Since our work is settled within the context of intelligent help systems where users have
to be supported in applying software, the planning domain of our system has to be based
on some kind of command language. As a first example domain we therefore use a subset
of the operating system UNIX, namely the UNIX mail system, which is of manageable
size and additionally provides a great variety in building and recognizing plans.
The deductive plan recognition and plan generation formalisms are based on a many­
sorted modal temporal logic (cf. [RP86], [Kro87], [HaI89]). Besides the temporal operators

4

O(next), (; (sometimes), 0 (always), and; (chop), assignments and control structures are
provided following imperative programming languages. The idea behind using those
programming language constructs is that plans and in particular abstract plans which
subsume a variety of concrete ones can in general be viewed as programs (cf. [MW86],
[Bib86]).
The mail commands (e.g. read, delete, quit) are axiomatized as basic actions in the fol­
lowing form:

precondition /\ EX(command) - 0 effect.

The read-command, for example, is defined according to its effect of changing the flag of
a current mail object:

\Ix : maiLobj ect

[--,flag(x) = "d" /\ EX(read(x)) - Oflag(x) = "r"],

where EX(c) means: "Execution of command c".
The control structures are the following:

• ; (chop operator)
The formula 1jJ; 'lj; means that IjJ holds before 'lj; thus denoting the sequential compo­
sition of both subformulas.

• if ... then ... else (conditional)
The formula if ¢ then ¢1 else ¢2 stands for [¢ - ¢1]/\ [--,¢ - ¢2]'

• while ... do ... od (while - loop)
The while-operator is axiomatized according to

[while IjJ do 'lj; od; a] +-+ [if IjJ then 'lj;; [while IjJ do 'lj; od; a] else a].

Certain formulas of our temporal logic are viewed as plans. Those plan formulas are

• all formulas EX(c), where c is a term of type command_name;

• assignments of form a := t, where a is a local variable and t is a term;

• all formulas 1jJ; 'lj; where IjJ and 'lj; are plan formulas;

• all formulas if IjJ then 'lj;1 else 'lj;2, where 'lj;1 and 'lj;2 are plan formulas and IjJ is a
formula not containing any temporal operator or basic plan formula;

• all formulas while IjJ do 'lj; od ; a, where 'lj; and a are plan formulas and IjJ is a
formula not containing any temporal operator or basic plan formula;

• all formulas (; 1jJ, where IjJ is a plan formula;

• all formulas IjJ V 'lj; where IjJ and 'lj; are plan formulas.

5

4 Plan Recognition

The plan recognition component differs in two aspects from the systems mentioned in
e.g.[FLS85], [SC85], [Hec87], [HKN+88]: It works deductively and communicates with a
pIal} generation component in different cross-talk modes (cf. figure 1). It will work incre­
mentally and non-monotonically (first approaches are described in [Hec91] and [Mer91]).
During the recognition process, which is described below in more detail, the following
functionality must be realized:

Basic Plan Recognition: Identify those plans which contain the observed action.

Test against Current State: Test whether the observed action fits into the time struc­
ture.

Constraint Evaluation: Test whether all constraints are fulfilled .

Recognized plans, plan hypotheses, and the recognition history are stored in the knowl­
edge base to be used later.

The plan recognition process is an

iterative process for selecting plan hypotheses which account for th e observed

actions.

Before describing the plan recognition procedure, we first consider some properties of its
input: the plan hypotheses and the observed actions.
In general, the plan hypotheses are no concrete action sequences, but contain several
degrees of abstraction:

1. The commands may not be completely instantiated, I.e., they contain formal pa­
rameters instead of an actual argument.

2. The temporal structure of the plan hypotheses may be ambiguous. They may
contain subformulas like OEX(a) which means "execute command a sometimes

within the duration of the plan hypothesis currently considered."

3. Nondeterministic choices like EX(a) V EX(b) can appear which mean "execute
command a or command b".

4. Besides actual domain commands, a plan hypothesis may also contain abstract com-

mands like readmails (cf. example below).

Observed single actions are described by formulas like EX (a), whereas action sequences
are expressed by EX(a1); EX(a2); ... ; EX(an).

At the beginning of the process a set of possible plan hypotheses 6 0 is provided by the
plan generation component. Together with the observed action EX (Command1) the plan
recognizer determines in the next state the set of hypotheses 6 1 so that every member

of 6 1 contains the observed action, or more formally:

6

(f- PR means that plan recognition specific deductions are used). If a sequence of obser­
vations EX(Commandl), .. . , EX (Comman~n) must be processed, the recognition process

can be abstractly described , as follows (ot means that the command is executed in the

i-th state):

6. 0 U {EX (Commandd} f- PR 6. 1

During this iterative process:

• completely recognized plans can be deleted from 6. i , and

• if no hypothesis can explain the observed actions, an adapted set 6. 0 of generated
possible hypotheses must be delivered by the generation component.

Assume that until now an action sequence lP = EX(al); ... ; EX(an-I) was observed and
that each of the plan hypotheses in 6.n- 1 = {PI, P2 , ... , Pm} could explain those obser­
vations. Let an be the next observed action. Then the plan recognition procedure works
as follows: It selects those hypotheses for which the formula lP; EX(an) constitutes a valid
starting sequence of actions. For each such Pi this means:

(a) The formula lP' = EX(aI); ... ; EX(an) contains the same actions as Pi wherever the
hypothesis demands these actions to be executed at a certain time and a parameter
binding compatible to the one demanded in Pi'

(b) There is a suitable concrete domain command in lP' wherever the plan hypothesis
contains an abstract command.

(c) For every nondeterministic choice in Pi, lP' contains exactly one of the alternative
actions.

(d) lP' induces a temporal structure compatible wi th the initial part of Pi.

The process taking place at each step of the recognition process can be described for each
plan hypothesis P E 6. i as follows: Let EX (Commandi) be the formula describing the
last observed action. Then the plan recognizer tries to derive a new hypothesis P' which
will become a member of 6. i +1 :

where P and pI are related in the following way: There is a way to split P into an initial
segment Initp, a terminating segment Restp and a segment Midp of commands describing
just that part of P currently considered. Informally, Initp is that part of the hypothesis
already recognized. It exactly corresponds to the sequence of observed actions of former
recognition steps, whereas Restp is that part which will be considered in the next step

7

if the current recognition step is successful, i.e., if Midp and EX (Command i) fulfill the
requirements (a) - (d) listed above. Thus we have

P = Initp; Midp; Restp

p 1 = Initp; EX(commandi); Restpl

where Restp l results from Restp by substituting formal parameters bound in the last step.
If Restp l becomes empty, the plan corresponding to this hypothesis was successfully rec­
ognized.

The potential of the plan recognition capabilities with a temporal logic described ab­
stractly above is explained through an example. The following plans are used as hypothe­
ses:

\largl: mbox,arg2: integer [EX(Planl(argl ,arg2)) +--+

EX (Jolder(arg1));

OEX(showmails());

o EX (readmails(arg2));

EX(d(arg2));

EX(Jolder(['#'])) V EX(quitO)]

\largl : mbox, arg2 : integer [EX(Plan2(argl, arg2)) +--+

EX (Jolder(arg 1));
o EX (showmails ());

o EX (readmails(arg2));

EX(quitO)]

The definition of the abstractions between commands is expressed by:

EX (J(['*'])) ~ EX(showmailsO)

EX(h([])) ~ EX(showmailsO)

\Ix : integer .EX(read(x)) ~ EX(readmails(x))

\Ix : integer.EX(next(x)) ~ EX(readmails(x))

The following sequence of commands is observed:

EX (Jolder([UnansweredMails]))

EX(h([]))

EX (read([7]))

EX(d([7]))

EX(Jolder(['#']))

8

Assume that the initial set ~o of plan hypotheses contains Planl and Plan2 . The first
observation EX (folder([UnansweredMails])) fulfills the constraint (a) for both hypotheses,
(b) - (d) need not be considered. Thus, after the first step we have:

InitPlanll

MidPlanl1

RestPlanll

RestPlan21

{Pla~11, Plan21}

InitPlan21 = EX (folder([UnansweredMails]))

MidPlan21 = 0 EX (showmailsO)

o EX (readmails(arg2)) ; ... ; EX (folderC['#'])) V EX(quitO)

o EX(readmails(arg2)); EX(quitO)

The description of the second observed command is OEX(h([])). None of the hypotheses
in ~1 contains a concrete action in its Mid part, but the abstract command showmails.
The command abstraction axioms tell us that h([}) is a suitable instance for this com­
mand, so that (b) holds for Planl 1 and Plan21. While (c) plays no role, we see that the
temporal structure of OEX(h([J)) is compatible with those of MidPlanl1 and MidPlan21 ,
and (d) holds. 2 Thus

InitPlan1 2

MidPlan12

RestPlan12

RestPlan22

{Plan1 2, Plan22}

InitPlan22 = EX(folder([UnansweredMails]));EX(h([]))

MidPlan22 = 0 EX(readmails(arg2))

EX (d([arg2])); EX (Jolder(['#'J)) V EX(quitO)

EX(quitO)

Having skipped one step where 02EX(read([7])) was observed, we get OSEX(d([7])).
Plan2 s is no longer a valid hypothesis because (a) is not fulfilled. So we get

~4
InitPlan14

MidPlan14

RestPlan14

{Plan1 4 }

EX(folder([UnansweredMails])); EX(h([])); EX(read([7])); EX(d([7]))

EX(folder(['#'])) V EX(quitO)

o
In the final step, the observation of 0 4 EX (folder(['#'])) leads to a successful recognition
of the first hypothesis because RestPlan15 contains no more actions. Thus,

~5 = EX (folder([UnansweredMails])); EX(h([])); EX(read([7]));

EX(d([7])); EX (folder(['#']))

is a concrete instance of our initial hypothesis Planl and the recognition process succeeds.

2If it is allowed to do some action sometimes, it is feasible to execute it in the next state.

9

5 Plan Generation

The plan generation facility consists of four different modules and a local knowledge base.
The deductive planner takes formal logic plan specifications as its input and automatically
g;enerates abstract plans from them. These plans are represented by plan formulas as
described in section 3. The generation of plans is guided by strategies and heuristics
which have succesfully been developed for a deductive program synthesis system [Biu88].
To produce concrete and executable plans, the abstract ones are forwarded to a compiler
module which incrementally generates sequences of basic operations. These sequences
constitute the output of the plan generation facility in the second cross-talk mode. The
coordinator module (see figure 1) analyzes user inputs, actions, and goals and activates
the planner to completely generate a new plan or it activates the reuse component. This
module enables the system to reuse previously generated plans and implements planning
from second principles.
Subsequently, we focus on the deductive planner and its integrated reuse facility as the
main parts of the plan generation system and explain how the generation and reuse of
plans proceeds.

Deductive Planning

The deductive plan generator starts from a formal plan specification given as a formula
of modal temporal logic. This specification formula contains as a subformula an atom of
the form EX(z), where z is an existentially quantified variable of type command-name.
Generating a plan from such a specification means to first replace the variable z by an
appropriate skolem term, e.g. , plan(x) and then produce an axiom Vx(EX(plan(x)) f--t ¢;)
, where ¢; is a modal plan formula as described in section 3. It additionally must have the
property that replacing EX (z) by ¢; in the specification formula makes this formula true,
i.e., the plan ¢; to be generated has to satisfy its specification. To achieve this, the plan
formula ¢; is derived from the specification formula using special plan generation rules.
These rules are partly borrowed from a set of transformation rules initially developed for
the deductive synthesis of programs in [Biu91] and adapted to the solution of planning
problems in [Biu90].
To give an idea of how deductive planning works in this context we give a short example.
Suppose we want to generate a plan for reaching the goal: "Read and delete all mails from

sender otto". This plan specification is represented by the following specification formula:

\1m : mbox :Jz : command_name

[EX(z) --+ \Ix: maiLobject [member(x,m) i\ sender(x) = "otto" i\ -,flag(x) = "d"

--+ 0 [Jlag(x) = "r" i\ 0 flag(x) = "d"]]]

Skolemization of this formula replaces z by the term plan(m), where plan is supposed to
be a new function symbol, and yields the formula

10

\:1m : mbox [EX(plan(m))

~ \:Ix: maiLobject [member(x,m) 1\ sender(x) = "otto" 1\ -,flag(x) = "d"

~ 0 [jlag(x) = "r" 1\ 0 flag(x) = "d" III

In order to obtain an axiom \:1m : mbox (EX(plan(m)) +--+ rjJ) defining the specified plan
two tasks have to be performed. The first one is deriving a subplan plan'(x) which for
any of the specified mail objects reaches the sub goals of reading and deleting it. The
second task is to find an appropriate control structure (in our case a while loop) which
guarantees that plan'(x) will be carried out for each of the described mail objects.
We will start with the first task and show how this part of the final plan can be derived
using a widely extended version of the so-called implication rule (d. [Biu91]) together
with the following axioms which are supposed to be available in our knowledge base:

Axl: OrjJ ~ 0 rjJ

Ax2: O(rjJ 1\ 'ljJ) +--+ (OrjJ 1\ 0'ljJ)

Ax3: 00 rjJ +--+ 0 OrjJ

Ax4: \:Ix : maiLobj ect
[-,flag(x) = "d" 1\ EX(read(x)) ~ Oflag(x) = "r" 1

Ax5: \:Ix : maiLobj ect
[-,flag(x) = "d" 1\ EX(delete(x)) ~ Oflag(x) = "d" 1

Ax4 and Ax5 describe the read and delete actions, respectively.

Let C, L, M, and Ki(1 ~ i ~ n) be formulas. The implication rule then reads:

IMPL: C ~ (uL 1\ M)
c ~ (uKl 1\ M), ... , C ~ (uKn 1\ M)

provided there exists an axiom (I{l 1\ . .. 1\ Kn) ~ L in the knowledge base. According to
the underlying modal logic the following rule derived from IMPL will also be used:

NEXTJMPL: C ~ (OuL 1\ M)
C ~ (OuK l 1\ M), ... , c ~ (OuKn 1\ M)

The implication rule is used to replace a (sub)goal in the plan specification by new subgoals
which are sufficient for it.

In order to derive a plan formula for our subplan plan'(x) from its specification

\:Ix : maiLobject [EX(plan'(x))
~ [-,flag(x) = "d" ~ 0 [(Jlag(x) = "r" 1\ 0 flag(x) = "d") III

we start with

[-,flag(x) = "d" ~ 0 [jlag(x) = "r" 1\ 0 flag(x) = "d" II
and apply the implication rule together with axiom Axl, i.e., we replace the conclusion
by

11

O[flag(x) = "r" A 0 flag(x) = "d"] obtaining

[-,flag(x) = "d" -+ O[flag(x) = "r" A 0 flag(x) = "d" II
as a new formula.

According to Ax2 this formula can be equivalently transformed into

[-,flag(x) = "d" -+ 0 flag(x) = "r" A 00 flag(x) = "d"].

Now the implication rule together with axiom Ax4 is applied in order to replace the
subgoal

Oflag(x) = "r" by the plan formula EX(read(x)).

We obtain two new formulas:

<PI : -,flag(x) = "d" -+ EX(read(x)) A 00 flag(x) = "d"
and

<P2 : -,flag(x) = "d" -+ -,flag(x) = "d" A 00 flag(x) = "d" .

The formula <PI is now transformed in order to even obtain a plan formula for the second
subgoal OOflag(x) = "d" .
First of all <PI can, according to Ax3, be replaced by:

-,flag(x) = "d" -+ EX(read(x)) A 0 Oflag(x) = "d" .

Now the implication rule is applied with Ax1 to get

-,flag(x) = "d" -+ EX(read(x)) A OOflag(x) = "d"

and finally applying that rule with Ax5 yields:

-,flag(x) = "d" -+ EX(read(x)) A OEX(delete(x)) .

Applying rule NEXT .JMPL in a final step we again obtain two new formulas:

<P3 : -,flag(x) = "d" -+ EX(read(x)) A OEX(delete(x))
and

<P4 : -,flag(x) = "d" -+ EX(read(x)) A O-,flag(x) = "d" .

From <P3 the following plan formula can be derived:

<P3 : -,flag(x) = "d" -+ EX(read(x)); EX(delete(x)).

Hence, we obtain

Vx : maiLobject [EX(plan'(x)) ~ [-,flag(x) = "d" -+ EX(read(x));EX(delete(x))]]

as a defining axiom for the specified plan plan'(x).
The formulas <P2 and <P4 which also have been derived during the generation process
describe two properties of the new plan:

Vx : maiLobject[EX(plan'(x)) -+ [-,flag(x) = "d"
-+ [-,flag(x) = "d" A 00 flag(x) = "d"]

12

and

\Ix : maiLobject[EX(plan'(x)) -+ [.flag(x) = "d"
-+ [EX(read(x)) 1\ O·flag(x) = "d" II

They represent so-called verification fo rmulas that have to be proved in order to guarantee
that the generated plan indeed satisfies its specification. This proof can be easily done
using the definition of plan'(x) above and an axiom asserting the read- and delete-flags
to be different.
Selecting the appropriate axioms and rules is essential for the plan generation process to
succeed. Additionally, this selection in particular influences the degree of abstraction the
generated plan has. If, for example, we had decided to use instead of axioms Ax4 and
Ax5 the weaker versions Ax4' and Ax5' with

Ax4': \Ix : maiLobject
[·flag(x) = "d" 1\ EX(read(x)) -+ 0 flag(x) = "r" 1

Ax5': \Ix : maiLobject
[·flag(x) = "d" 1\ EX(delete(x)) -+ 0 flag(x) = "d"],

then the generated plan definition would have read:

\Ix : maiLobject[EX(plan'(x)) f--+ [.flag(x) = "d" -+

o EX(read(x)) j 0 EX(delet e(x)) 11

To finally end up with the plan generation process starting from our initial specification
of plan:

\1m : mbox [EX(plan(m))-+

\Ix: maiLobject [member(x,m) 1\ sender(x) = "otto" 1\ .flag(x) = "d"

-+ 0 [flag(x) = "r" 1\ 0 flag(x) = "d" 111

we have to introduce a while-loop in order to work through the list of all mail objects
from sender "otto" and carry out t he generated subplan plan'(x) for each of its elements.
Finally we obtain the following plan definition:

\1m : mbox [EX(plan(m)) f--+ [a:= from(sender, "otto", m)j

while .Empty(a) do
b:= first(a)j EX(plan'(b))j a:= tail(a) od] 1

Plan Reuse

A plan as generated in section 5 represents problem solving knowledge that was used by
the planning system to achieve a given goal state from a particular initial state. Therefore,
we develop a reuse mechanism that enables the planner to save generated plans for a later
reuse and thus extend the problem solving knowledge. The planning knowledge can now
be applied to find out whether a problem can be solved by adapting an already existing
plan. The architecture of the reuse component is based on a 4-phase model (d. [Koh91])
describing the reuse process:

13

Problem
description:
P=[SO,SGJ •
So • Initial state
SG • goal state

..
Plan Library

Determination

Interpretation:
RI=inta(R ,SO,SG)
a : Object mapping

Refitting:
~ R'I=refitK(RI)

K: Planning knowledge

Plan Reuse System

Figure 2: A 4-Phase Model of Plan Reuse

~ Problem
solution:
R'I

To explain how the reuse process works we reuse the plan that was generated in the
preceding example to solve the new planning task: "Read all mails from otto, save them
in the folder with the sender's name, and then delete the mails". It is represented by the
following specification formula:

(P :) Vm,n:
[EX(z)

mbox ::Jz : command_name
--t Vx : maiLobject
[member(x,m) Asender(x) = "otto" A'flag(x) = "d"
A folder(n) = "otto"
--t 0 [Jlag(x) = "r" A 0 [Jlag(x) = "*" A m ember(x, n)

AO flag(x) = "d" llll

Determination of a Reuseable Plan Entry

To solve the planning problem, a stored plan entry from the plan library is determined.
We presuppose that the plan library does not contain (user-)predefined plan entries, but is
built up using information provided by the deductive plan generation component, e.g., the
generalized specification formula, the generalized plan schema, the verification formulas
for the plan. The determination process mainly concentrates on a syntactical comparison
of the current specification formula P with the generalized specification formulas R oc­
curring in the various plan entries. In our example the determination process chooses the
following generalized plan specification R from the plan library as a hypothesis on which
a solution for P can be based upon:

(R :) Vu : mbox Vs: sender
[EX(v) --t

::Jv : command_name
Vw : maiLobject
[member(w,u) A sender(w) = sA 'flag(w) = "d"
--t 0 [Jlag(w) = "r" A 0 flag(w) = "d" III

14

Interpretation of the Plan Entry in the Current Planning Situation

Now R has to be interpreted in the current planning situation by matching the two
formulas. The main problem here is to find the correct mapping a of objects in P to the
variables in R to generate a correct instantiation of R. Obviously, an optimal solution
can be obtalned by applying the substitution {v f- Z, U f- m, W f- X, Sf-otto} to R
leading to its instantiation:

'1m : mbox :Jz: command_name
[EX(z) --+ 'Ix : maiLobject

[member(x,m) /\ sender(x) = "otto" /\ -,flag(x) = "d"
--+ 0 [flag(x) = "r" /\ 0 flag(x) = "d"]]]

Refitting of the Interpreted Plan Entry

By completing the instantiation phase in our example we obtain a fully instantiated plan
specification Rr which we can now compare with the current plan specification P to
evaluate whether we already obtained a solution. In general, we will be confronted with
the problem that the plan specifications differ in the description of the initial or the goal
state, thus requiring a refitting of the plan corresponding to Rr. In our example a number
of formulas in P have no corresponding formula in Rr, meaning that the plan we want
to choose for reuse will only partially solve the current goal. Thus, we obtain a formula
R'r which contains the generated plan plan'(x), but also an open subgoal for which the
planner has to be activated again:

(R'r :) '1m, n : mbox :Jz : command_name
[EX(z) --+ 'Ix : maiLobject

[member(x,m) /\ sender(x) = "otto" /\ -,flag(x) = "d"
/\ folder(n) = "otto"
--+ EX(read(x)); 0 flag(x) = "*" /\ member(x, n); EX(delete(x))]]

This specification describes that the plan to be reused has to be modified in such a way,
that ari additional condition has to hold in the initial state and that aI1 addi tional action
has to be included.

Updating the Plan Library

The reuse process finishes with the update of the plan library. The decision whether a
plan is "worth" storing in the plan library depends on its similarity to already stored
plans. A new plan entry is built up from the specification formula for the plan, the plan
itself, the verification conditions for the plan, and the transformation rules used in the
generation process. Furthermore, an abstraction process (d. section 4) will be applied
leading to the storage of abstract plan entries.

15

References

[Bib86] W. Bibel. A deductive solution for plan generation. New Generation Com­

puting, 4:115- 132, 1986.

[Biu88] S. Biundo. Automated synthesis of recursive algorithms as a theorem proving ·
tool. In Proceedings of the 8th European Conference on Artificial Intelligence,
Miinchen, pages 553- 558, 1988.

[Biu90] S. Biundo. Plan generation using a method of deductive program synthesis.
Research Report RR-90-09, German Research Center for Artificial Intelligence
Inc., 1990.

[Biu91] S. Biundo. A utomatische Synthese rekursiver Algorithmen als Beweisver­

fahren. Informatik Fachberichte. Springer, Berlin, 1991. forthcoming.

[Bre90] J. Breuker. EUROHELP Developing Intelligent Help Systems. EC, Kopen­
hagen, 1990.

[DGH87] D. Dengler, M. Gutmann, and G. Hector. Der Planerkenner REPLIX. Memo
No. 16, Dept. of Computer Science, University of Saarbriicken, W.Germany,
1987.

[Fin83] T. W. Finin. Providing help and advice in task oriented systems. In Proceed­
ings of the 8th International Joint Conference on Artificial Intelligence, pages
176- 178, 1983.

[FLS85] G. Fischer, A. Lemke, and T. Schwab. Knowledge-based help systems. In
Proceedings of Human Factors in Computing Systems (CHI'85) , pages 161-
167, 1985 .

[HaI89] R. W. S. Hale. Programming in temporal logic. Technical Report 173, Com­
puter Laboratory, University of Cambridge, England, 1989.

[Hec87] M. Hecking. How to Use Plan Recognition to Improve the Abilities of the Intel­
ligent Help System SINIX Consultant . In Proceedings of the Second IFIP Con­
ference on Human-Computer Interaction, held at the University of Stuttgart,

Federal R epublic of Germany, 1-4 September, 1987, pages 657-662, 1987.

[Hec91] M. Hecking. Eine logische Behandlung der verteilten und mehrstufigen Plan­
erkennung. PhD thesis, University of Saarbriicken, 1991. forthcoming.

[Heg91] S.J. Hegner. Plan realization for complex command interactions in the unix
help domain . In P. Norwig, W. Wahlster, and R. Wilensky, editors, Intelligent
Help Systems for UNIX - Case Studies in Artificial Intelligence. Springer,
1991.

[HKN+88] M. Hecking, C. Kemke, E. Nessen, D. Dengler, M. Gutmann, and G. Hector.
The SINIX Consultant - A Progress Report. Memo No. 28, Dept. of Computer
Science, University of Saarbriicken, W.Germany, 1988.

16

[Koh91] J. Kohler. Approaches to the reuse of plan schemata in planning formalisms.
Technical Memo TM-91-01, German Research Center for Artificial Intelligence
Inc., 1991.

[Kro87] F. Kroger. Temporal Logic of Programs. Springer, Heidelberg, 1987.

[Lur88] M. Luria. Knowledge intensive planning. Technical report ucb/csd 88/433,
Computer Science Division, University of California, 1988.

[Mer91] G. Merziger. Approaches to abduction - an overview. Technical memo, Ger­
man Research Center for Artificial Intelligence Inc., 1991. forthcoming.

[MW86] Z. Manna and R. Waldinger. How to clear a block: Plan formation in situa­
tionallogic. In Proceedings CADE 86, pages 622-640, 1986.

[NWWng] P. Norwig, W. Wahlster, and R. Wilensky. Intelligent Help Systems for UNIX
- Case Studies in Artificial Intelligence. Springer, Heidelberg, 1991 (forthcom­
ing).

[RP86] R. Rosner and A. Pnueli. A choppy logic. In Symposium on Logic in Computer
Science, Cambridge, Massachusetts, 1986.

[SC85] M. Sullivan and P. R. Cohen. An endorsement-based plan recognition pro­
gram. In Proceedings of the 9th International Joint Conference on Artificial
Intelligence, pages 475- 479, 1985.

17

Deutsches
Forschungszentrum
fOr KOnstliche
Intelllgenz GmbH

DFKI Publikationen

Die folgenden DFKI VerOffentlichungen oder die
aktuelle Liste von erha1tlichen Publikationen
konnen bezogen werden von der oben angegebenen
Adresse.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-90-01
Franz Baader: Terminological Cycles in KL-ONE­
based Knowledge Representation Languages
33 pages

RR-90-02
Hans-Jurgen Biirckert: A Resolution Principle for
Clauses with Constraints
25 pages

RR-90-03
Andreas Dengel, Nelson M. Mattos: Integration of
Document Representation, Processing and
Management
18 pages

RR-90-04
Bernhard Hollunder, Werner Nutt: Subsumption
Algorithms for Concept Languages
34 pages

RR-90-05
Franz Baader: A Formal Definition for the
Expressive Power of Knowledge Representation
Languages
22 pages

RR-90-06
Bernhard HoUunder: Hybrid Inferences in KL-ONE­
based Knowledge Representation Systems
21 pages

RR-90-07
Elisabeth Andre, Thomas Rist: Wissensbasierte
Informationspnisentation:
Zwei Beitrage zorn Fachgespnich Graphik und KI:
1. Ein planbasierter Ansatz zur Synthese

illustrierter Dokumente
2. Wissensbasierte Perspektivenwahl fiir die

automatische Erzeugung von 3D­
Objektdarstellungen

24 pages

DFKI
-Bibliothek­
PF 2080
6750 Kaiserslautem
FRO

DFKI Publications

The following DFKI publications or the list of
currently available publications can be ordered from
the above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-90-08
Andreas Dengel: A Step Towards Understanding
Paper Documents
25 pages

RR-90-09
Susanne Biundo: Plan Generation Using a Method
of Deductive Program Synthesis
17 pages

RR-90-10
Franz Baader, Hans-Jurgen Burckert, Bernhard
Hollunder, Werner Nutt, Jorg H. Siekmann:
Concept Logics
26 pages

RR-90-11
Elisabeth Andre, Thomas Rist: Towards a Plan­
Based Synthesis of Illustrated Documents
14 pages

RR-90-12
Harold Boley: Declarative Operations on Nets
43 pages

RR-90-13
Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to
Terminological Cycles
40 pages

RR-90-14
Franz Schmalhofer, Otto Kuhn, Gabriele Schmidt:
Integrated Knowledge Acquisition from Text,
Previously Solved Cases, and Expert Memories
20 pages

RR-90-15
Harald Trost : The Application of Two-level
Morphology to Non-concatenative German
Morphology
13 pages

RR-90-16
Franz Baader. Werner NUlt: Adding
Homomorphisms to Commutative/Monoidal
Theories. or: How Algebra Can Help in Equational
Unification ·
25 pages

RR-90-17
Stephan Busemann
Generalisierte Phasenstrukturgrammatiken und ihre
Verwendung zur maschinellen Sprachverarbeitung
114 Seiten

RR-91-01
Franz Baader. Hans-JUrgen BUrckert. Bernhard
Nebel. Werner Nutt. and Gert Smolka:
On the Expressivity of Feature Logics with
Negation. Functional Uncertainty. and Sort
Equations
20 pages

RR-91-02
Francesco Donini. Bernhard Hollunder. Maurizio
Lenzerini. Alberto Marchetti Spaccamela. Daniele
Nardi. Werner Nutt:
The Complexity of Existential Quantification in
Concept Languages
22 pages

RR-91-03
B.Hollunder. Franz Baader: Qualifying Number
Restrictions in Concept Languages
34 pages

RR-91-04
Harald Trost
X2MORF: A Morphological Component Based on
Augmented Two-Level Morphology
19 pages

RR-91-05
Wolfgang Wahlster. Elisabeth Andre. Winfried
Graf. Thomas Rist: Designing Illustrated Texts:
How Language Production is Influenced by Graphics
Generation.
17 pages

RR-91-06
Elisabeth Andre. Thomas Rist: Synthesizing
Dlustrated Documents
A Plan-Based Approach
11 pages

RR-91-07
Gilnter Neumann, Wolfgang Finkler: A Head­
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR-91-08
Wolfgang Wahlster. Elisabeth Andre. Som
Bandyopadhyay. Win fried Graf, Thomas Rist
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

RR-91-09
Hans-JUrgen Burckert. JUrgen Muller. Achim
Schupeta
RATMAN and its Relation to Other Multi-Agent
Testheds
31 pages

RR-91-10
Franz Baader. Philipp Hanschke
A Scheme for Integrating Concrete Domains into
Concept Languages
31 pages

RR-91-11
Bernhard Nebel
Belief Revision and Default Reasoning: Syntax­
Based Approaches
37 pages

RR-91-12
J.Mark Gawron. John Nerbonne. and Stanley Peters
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13
Gert Smolka
Residuation and Guarded Rules for Constraint Logic
Programming
17 pages

RR-91-15
Bernhard Nebel. Gert Smolka
Attributive Description Formalisms ... and the Rest
of the World
20 pages

RR-91-16
Stephan Busemann
Using Pattern-Action Rules for the Generation of
GPSG Structures from Separate Semantic
Representations
18 pages

RR-91-17
Andreas Dengel & Nelson M. Mattos
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR-91-20
Christoph Klauck. Ansgar Bernardi. Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR-91-23
Prof. Michael Richler. Ansgar Bernardi. Christoph
Klauck. Ralf Legleitner
Akquisition und Reprasentation von technischem
Wissen ffir PJanungsaufgaben im Bereich der
Fertigungstechnik
24 Seiten

RR-91-25
Karin Harbusch. Wolfgang Finkler. Anne Schauder
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M. Bauer. S. Biundo. D. Dengler. M. Hecking. l .
Koehler. G. Merziger
Integrated Plan Generation and Recognition

- A Logic-Based Approach-
14 pages

DFKI Technical Memos

TM-89-01
Susan Holbach-Weber: Connectionist Models and
Figurative Speech
27 pages

TM-90-01
Som Bandyopadhyay: Towards an Understanding of
Coherence in Multimodal Discourse
18 pages

TM-90-02
Jay C. Weber: The Myth of Domain-Independent
Persistence
18 pages

TM-90-03
Franz Baader. Bernhard Hollunder: KRIS:
Knowledge Representation and Inference System
-System Description-
15 pages

TM-90-04
Franz Baader. Hans-liirgen Biirckert. lochen
Heinsohn . Bernhard Hol/under. lurgen Muller.
Bernhard Nebel. Werner NUll. Hans-liirgen
Profitlich: Terminological Knowledge
Representation: A Proposal for a Terminological
Logic
7 pages

TM-91-01
lana Kohler
Approaches to the Reuse of Plan Schemata in
Planning Formalisms
52 pages

TM-91-02
K nut Hinkelmann
Bidirectional Reasoning of Hom Clause Programs:
Transformation and Compilation
20 pages

TM-91-03
Otto Kuhn. Marc Linster. Gabriele Schmidt
Clamping, COKAM, KADS, and OMOS:
The Construction and Operationalization
of a KADS Conceptual Model
20 pages

TM-91-04
Harold Boley
A sampler of Relational!Functional Definitions
12 pages

TM-91-05
lay C. Weber. Andreas Dengel and Rainer
Bleisinger
Theoretical Consideration of Goal Recognition
Aspects for Understanding Information in Business
Letters
10 pages

DFKI Documents

D-89-01
Michael H. Malburg. Rainer Bleisinger:
HYPERBIS: ein betriebliches Hypermedia­
Informationssystem
43 Seiten

D-90-01
DFKI Wissenschaftlich-Technischer Jahresbericht
1989
45 pages

D-90-02
Georg Seul: Logisches Programmieren mit Feature
-Typen
107 Seiten

D-90-03
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: AbschluBbericht des Arbeitspaketes
PROD
36 Seiten

D-90-04
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: STEP: Uberblick tiber eine zuktinftige
Schnittstelle zum Produktdatenaustausch
69 Seiten

D-90-05
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: Formalismus zur Reprasentation von
Geo-metrie- und Technologieinformationen als Teil
eines Wissensbasierten Produktmodells
66 Seiten

D-90-06
Andreas Becker: The Window Tool Kit
66 Seiten

D-91-01
Werner Stein. Michael Simek
RelfunIX - An Experimental Prolog
Implementation of Relfun
48 pages

D-91-03
Harold Boley. Klaus Elsbernd. Hans-Gunther Hein.
Thomas Krause
RPM Manual: Compiling RELFUN into the
RelationallFunctional Machine
43 pages

D-91-04
DFKI Wissenschaftlich-Technischer J ahresbericht
1990
93 Seiten

D-91-06
GerdKamp
Entwurf, vergleichende Beschreibung und
Integration eines Arbeitsplanerstellungssystems fUr
Drehteile
130 Seiten

D-91-07
Ansgar Bernardi. Christoph Klauck. Ralf Legleitner
TEC-REP: Reprlisentation von Geometrie- und
Technologieinformationen
70 Seiten

D-91-08
Thomas Krause
Globale DatenfluBanalyse und horizon tale
Compilation der relational-funktionalen Sprache
RELFUN
137 pages

D-91-09
David Powers and Lary Reeker (Eds)
Proceedings MLNLO'91 - Machine Learning of
Natural Language and Ontology
211 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 USeS).

D-91-10
Donald R. Steiner. Jurgen Muller (Eds.)
MAAMA W'91: Pre-Proceedings of the 3rd
European Workshop on "Modeling Autonomous
Agents and Multi-Agent Worlds"
246 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 USeS).

D-91-11
Thilo C. Horstmann
Distributed Truth Maintenance
61 pages

D-91-12
Bernd Bachmann
Hieracon - a Knowledge Representation System
with Typed Hierarchies and Constraints
75 Seiten

Integratea Plan Generation ana Recognition
- A Logic-Based Approach -

M. Bauer, S. Biundo, D. Dengler, M. Hecking, J. Koehler, G. Merziger

RR-9'~26
Research Report

