
Generic Update Operations Keeping Object�Oriented Databases

Consistent

Christian Laasch� Marc H� Scholl

Department of Computer Science� Information Systems � Databases
ETH Zentrum� CH����� Z�urich� Switzerland

e�mail	 flaasch� schollg
inf�ethz�ch

In� R� Studer� editor� Proc� �nd GI�Workshop on Information Systems and Arti�cial Intelligence �IS�KI	�
Ulm� Germany� February
���� IFB �
�� Springer Verlag� Heidelberg�

Abstract

One of the objectives of ooDBMSs is to use type�speci�c methods for manipulating objects� in order

to maintain the consistency of the database� This is� however� little help for the method implementor as

far as the model�inherent constraints are concerned� We propose a set of generic update operations that
maintain integrity constraints such as types� class memberships� subtype�� subclass�relationships� and

class predicates� The operations can be used for implementing type�speci�c update methods or directly

by applications� We present an approach to consistently de�ne update semantics for an object model

including classes� views� and variables that is based on necessary and su�cient predicates akin to de�ned

concepts in KL�ONE style languages�

Keywords� Object�Oriented Databases� Updates� Views� Integrity Constraints� Object Model

� Introduction

One of the main objectives of the object�oriented approach to modeling is that clients use only type�speci�c
methods for manipulating objects� in order to guarantee consistency when updating objects� The more
powerful method implementations can be� the richer the application semantics that are encapsulated in
these� While type�speci�c methods can provide integrity�preserving updates for clients of the methods� they
alone provide little help for the method implementor as far as integrity preservation is concerned�

To facilitate the implementation of consistency�preserving methods� OODB models should provide a set of
generally applicable generic update operations that maintain the model�inherent integrity constraints� They
can be used by type implementors to de�ne type�speci�c update methods� Furthermore� many applications
might make direct use of these generic update operators�

Generic update operations have been used in the relational model
e�g�� in the SQL language�� They
typically ignored the maintenance of integrity constraints� i�e�� referential integrity and uniqueness of a
primary key� Since object�oriented data models o�er a much broader scope of built�in semantics
such as
the subclass relationship�� there is an even stronger need for generic update operators that account for these
semantics� If methods are the only way to guarantee consistent database updates� the method implementor
has to take care of all integrity constraints� Moreover� changing the schema� for example adding new
constraints� requires additional checks on all methods� We argue that it is crucial that advanced database
models o�er not only more capabilities to statically specify semantics but also o�er update operations that
dynamically guarantee consistency during modi�cations�

We present an approach toward de�ning such a collection of generic update operators
in the context of
our object model COCOON �SS��a��� Among the model�inherent integrity constraints are the typing� class
membership� subtype� and subclass�relationships� class predicates� variables� and views�

The key idea that leads to update operations keeping the database consistent is to separate the sphere of
constraints into types and classes where classes internally represent necessary and su�cient predicates� The
e�ect of update operations is then captured either by manipulating the association of objects to types or by
re�evaluating these class predicates� That is� we integrate the techniques of automatic classi�cation known

�

from knowledge representation systems
like KL�ONE �BS���� BACK �NP��� PSKQ���� and a strong type
system form object�oriented programming languages
e�g� �Mey��� AB�����

The organization of the paper is as follows	 in Section � we review the concepts of the COCOON object
model� We summarize the basic terminology and the object preserving semantics of the query language
operators� Section � presents the generic update operations and gives their semantics in terms of state trans�
formations� Section � shows the representation of classes by predicates� such that automatic classi�cation of
objects guarantees subclass and class membership consistency� In Section � we discuss update semantics for
subschemas� A comparison to related work is presented in Section � before we conclude in Section ��

� The COCOON Model

The COCOON model as described in �SS��a� SS��b� consists of objects and functions
see also �WLH���
Day����� but separates types from classes	 Types include all compile�time information� whereas classes
represent collections that vary over time� COCOON is a core object model� meaning that we focus on the
essential ingredients necessary to de�ne a set�oriented query and update language� Therefore� for instance�
tuples as a type constructor are excluded from the core�

��� Basic Concepts

Objects are instances of abstract object types
AOTs�� They can be manipulated only by means of their
interface� a set of functions�

Data are instances of concrete types
such as numbers� strings� and constructed types
such as sets�� The
distinction from objects is equal to �Bee����

Functions are described by a name and signature� they are the interface operations of type instances� The
implementation is speci�ed separately� We use the term functions in the general sense including retrieval
functions as well as methods� that is� functions with side�e�ects� According to generic update operations we
consider only stored retrieval functions� which are uniform abstractions of �attributes� and �relationships� of
classical data models� since directly updating derived or computed functions requires type�speci�c methods�
Indirect updates
i�e�� updates to values used in the derivation� are automaticallypropagated upon evaluation�
A capability to express more semantics in the model is the feature of de�ning inverses of functions that are
enforced by the system during updates�

Types describe the common interface of all instances of that type� That is the set of applicable functions in
case of abstract object types� So� the de�nition of a type normally consists of two parts	 a set of functions
and a type name�� The following example de�nes a type PersonT with three functions name� age� and
children	

type PersonT isa ObjectT � name 	 string�
age 	 integer�
children 	 set of PersonT �

The function children illustrates the use of set as a type constructor� In general� types can either be atomic

data types and abstract object types� or constructed� We allow the application of two type construc�
tors	 set and function
e�g�� children is an instance of the constructed type �functions from PersonT to
set of PersonT���

As we will see later� queries can dynamically produce new types� Those are unnamed� but their set of
functions can be derived from the query by standard type inference�

Subtyping� If a type is de�ned as a subtype of another then every instance of the subtype is also an instance
of its supertype� This is called multiple instantiation� The de�nition of the subtype relationship
�� can be
divided into two parts	 First subtyping between atomic types and secondly between constructed ones� The
subtype relationship between constructed types can be derived as follows
see also �MCB����	

set of T� � set of T� �� T� � T� for sets� and

T dom
� � T

rng
� � T dom

� � T
rng
� �� T

rng
� � T

rng
� � T dom

� � T dom
� for functions�

�In this paper� we write a � � �T at the end of an identi�er to make clear that it is a type� and a � � �C for classes�

�

The subtyping relation between abstract object types is de�ned by the inclusion of the applicable function
sets� For example� assuming the following additional type de�nition

type EmployeeT isa PersonT � salary 	 integer�
courses 	 set of string�

the EmployeeT type is a subtype of the type PersonT � since the applicable functions of PersonT
fname�
age� childreng� are included in the function set of EmployeeT
which is fname� age� children� salary�
coursesg�� Subtyping de�nes a partial order � on abstract object types� forming a lattice� such that for
any two types their lowest upper bound and greatest lower bound is always de�ned� The top element of the
lattice is the most general type ObjectT where no user�de�ned function is applicable
therefore� all instances
of de�ned types in the database are also instances of ObjectT �� the bottom element is the type
�� that is
associated with the set that includes all functions� We allow multiple inheritance� that is� types may have
more than one supertype� We assume that naming con�icts have already been resolved
for instance� by
pre�xing function names with type names��

Classes and Views are strictly distinguished from types in the following sense
see also �ACO��� Bee����	
Types are interface speci�cations
a collection of functions�� whereas classes are containers for objects of
some type
type extents�� Each class or view� C� represents a
typed� set of objects and associates a type�
the member type
C�� to all objects in the set extent
C�� The extent of a class includes all objects that are
instances of the member type and ful�ll class�speci�c properties� For example	

class PersonC 	 PersonT some ObjectC�
class Y oungC 	 PersonT some PersonC where age � ���

The member types of both classes is the type PersonT � The predicate given for class YoungC is a constraint
that all members of YoungC have to be persons younger than ��� The keyword some indicates that this is
a necessary� but not su�cient� condition for members of PersonC to become members of YoungC� Changing
the keyword some to all would indicate a necessary and su�cient condition	 in this case the DBMS would
automatically classify persons into the subclass� if the predicate evaluates to true� In the remainder we
denote classes speci�ed with the keyword all � some as all�classes � some�classes� respectively� Notice that�
unlike e�g� �D���� Kim��� S�O���� we de�ne the extent of a class to include the members of all its subclasses�
Views that are de�ned by queries of arbitrary complexity can be regarded as a special kind of classes� because
their extent is su�ciently speci�ed and their type can be derived��

Classes represent polymorphic sets	 Members may be instances of several other
sub��types particular
subtypes in addition to the member type� Type checking of our language always refers to the unique member
type� though� Due to the separation of types and classes� there may be any number of classes for a particular
type�

Subclassing� There are several choices as to how to de�ne a subclass relationship� Depending on whether
the member types of two classes are the same or one is a subtype of the other� and depending on whether
the extent of one class is a subset of the extent of the other� That is� we have two known relationships to
consider	 subtype and subset� We will always distinguish carefully which one of them holds� because they
are often correlated� but they need not� We will speak of a subclass relationship C� v C�� i� for the two
classes it is true that member type
C�� � member type
C�� and extent
C�� 	 extent
C��� Usually� at
least one of the ordering relationships will be proper� Continuing the example	

class PersonC 	 PersonT some ObjectC�
class Y oungC 	 PersonT some PersonC where age � ���
class EmployeeC 	 EmployeeT some PersonC�

The class YoungC is a subclass of PersonC with the same type� but a subset of the objects� whereas
EmployeeC is a subclass associated with a subtype of PersonT
and probably�but not necessarily�also a
subset��

Variables� In order to be able to refer to objects and results of previous algebra expressions� we allow
the use of variables instead of making the object identity explicit� Variables are used as temporary names

�handles�� for instances of any type� i�e�� data
e�g� integer�� objects� sets of any type or functions� They
have to be declared with their type in the database sublanguage�either explicitly or by a query�� such
that compile�time type checking applies to variables too� For example�

�The capability of materializing views is not considered in this paper�

�

var Kids 	 set of PersonT�
var My Child 	 PersonT�
var Likes Cats 	 PersonT � bool

declares variables of type set of PersonT � PersonT � and PersonT � bool� respectively� Hence� the set
variable� for instance� can keep the result of a selection on the database class PersonC� the object variable�
for example� can be assigned the result of an object creation of type PersonT in order to refer to the new
object later
the operators are shown in the next sections�	

Kids 	� select �P �
PersonC��
create �PersonT �
My Child��
set �name 	� Susie!�
My Child��

In the example� the query de�nes Kids to have as value a subset of the persistent objects from the input
class� Then a new object of type PersonT is created and assigned to the object variable My Child� After
that� the name function for the new object is set to the value Susie!�

Variables are crucial w�r�t� consistent update semantics� since they introduce the notion of assignments

which in turn is typically associated with a copy semantics�� Essentially� variables introduce a second object
space in addition to the
persistent� database	 the transient objects in an application program� The idea of
a snapshot
taken by an assignment to a variable� is not easily combined with object identity
i�e�� sharing�	
if the value of a variable contains a shared object� updates to that object have to be re�ected in the variable�

��� Generic Query Operations

We use a set�oriented algebra� where the inputs and outputs of the operations are sets of objects� Hence�
query operators can be applied to extents of classes� set�valued function results� query results� or set variables�
The e�ects of each operator are described separately for type and extent�
Only union� intersect� and
pick have an e�ect on both��

Selection
 select �P �
set�expr� � returns a subset of the input set of objects� namely those satisfying the
predicate P � The type of the set is unchanged� it is type
set�expr��

Projection
 project �f�� ���� fn�
set�expr� �� The output of a projection is a set with a usually new type�
a supertype of the input type	 fewer functions are de�ned� namely only those listed in the projection� All
objects of the input set are also elements of the output set
object preservation��

Extend
 extend �f� 	� expr�� ���� fn 	� exprn�
set�expr� �� Projection eliminates functions� extend de�nes
new derived ones� Obviously� each function name fi must be di�erent from all existing functions for the type
of the input� The expression expri can be any legal arithmetic�� boolean�� or set�expression� The result set
contains exactly the same objects as the input� but a new type� a subtype of the input type� is associated to
it
all the old functions plus the new ones are de�ned on it��

Pick
 pick
set�expr� � is provided to convert a singleton set into the only element
i�e�� drop the spurious
set braces�� The result type is the element type of the set�

Set operations� As the extent of classes are sets of objects� we can perform set operations as usual� With
a polymorphic type system� we need no restrictions on operand types of set operations
ultimately� they are
all objects�� The result type� however� depends on the input types	 for the union it is the lowest common
supertype
in the lattice� of the input types� The intersection results in the greatest common subtype� �nally�
di�erence operation yields a subset of its �rst argument with the same type�

These are the basic object preserving query operators of our algebra� Other operators� such as join can be
derived from them� The complete algebra� including operators for generating sets of tuples as query results
to communicate with value�oriented environments� is described in �SS��b� SS��a��

� Generic Update Operations

This section gives the semantics of our generic update operators� We will �rst sketch the systematics of the
operators we o�er� Then we will describe how the state of a database is formally de�ned� Finally� we show
how each of the generic update operators a�ects this state�

�

��� Systematics of Update Operators

All elementary update operations are applied to single objects instead of sets� However� in order to apply
set�oriented updates we provide a descriptive iterator
apply to all�upd�op�
set�expr�� that takes one update
operation as a parameter that is executed for each element of a set
e�g�� a query result��

Our generic update operators can be divided into three groups� according to the three modeling concepts	
variables
including functions�� types� and classes�

 Assignments
	� and set� for changing values of variables and functions
Section �����

 Operations for object evolution	 besides being created and deleted� objects might also gain or lose
types
Section �����

 Operations
add and remove� for manipulating the extents of classes
Section �����

In contrast to the �rst two groups� the third one contains no elementary operations� This is� because classes
are formalized by using functions that are applicable to instances of an abstract object type represent�
ing classes� Therefore the operations for manipulating the extent of classes can be expressed in terms of
elementary operations�

��� Formalization of the Database State

Update operations are transformations from one database state to another� This section describes how we
formalize the notion of a database state�

Common to all di�erent possibilities of formalizing the state of a database� is the fact that all information
concerning the current state of the data level is represented� This is in our model� information about instance
relationships� and the values of functions and variables� The class membership is excluded from the state�
because classes can be modeled by types and functions
see Chapter ��� According to our object�function
approach� we do not model an internal state of an object directly� Rather� all information on objects is
contained in the instance relationships and the function and variable mappings�

Formally� function names are considered as variables over function types� Since also the active domain
of abstract object types� which de�nes is the current set of instances� can be regarded as variables� we can
represent variables� functions� and abstract object types all in the same way	 by variables
or external names�
to which the database state associates a current value�

That is� the database state is de�ned by a function � that maps variables to values� The type of variables
can be described by a function A yielding a type expression for each variable�

For example let the variable person of type PersonT
i�e�� A
person� � PersonT � denote an object p�

i�e�� �
person� � p��� Besides this variable there might be a function name with A
name� � PersonT �
string� The value of the variable
resp� function� name can be described by a set of pairs that consists of an
object of type PersonT as the �rst component and a string as the second� For example� the current value
of the function name might be the following set	

fhp�� !Smith!i� hp�� !Miller!ig

Note that this set is one instance of the type PersonT � string� the set of all possible functions mapping
persons to strings�

The active domain of any abstract object type is obtained as the value of function � applied to the type�
For example� in our current state �
PersonT � � fp�� p�g� We do not explicitly maintain active domains of
constructed types� because these can be derived from the active domains of the component types� The state
function � itself can also be described as a set of pairs� For example� our current state includes the following	

� � fhperson� p�i� hPersonT� fp�� p�� � � �gi� hname� fhp�� !Smith!i� hp�� !Miller!i� � � �gi� � � �g

Since our model includes variables as part of the interface between the database and an application program�
the state describes not only persistent information
the database�� but also information that might be
transient
like variables of a program�� In order to di�erentiate between persistent and transient objects�
we state that all members of the prede�ned class ObjectC are persistent� Objects that are not member of
this class are transient ones� Therefore persistent classes
i�e�� classes representing persistent objects� are

�

subclasses of the class ObjectC� Due to this de�nition of persistence� we do not need additional operations for
making objects persistent or transient� since we can make use of the operations add and remove that add
or remove an object to or from the extent of a class� respectively� Thus� the semantics of update operations
can be de�ned independently of persistence�

The semantics of update operations can now be de�ned by specifying the new value of the state function
� depending on the update and on the old state� We will not present here the full details of the formalization�
the interested reader is referred to �SLR�����

��� Assignments

Assignments to Variables

The value of variables can be explicitly modi�ed by an assignment� As usual for object�oriented languages�
the inferred type of the right�hand side expression can be a subtype of the variable!s type� For example�
according to the state above the assignment

person 	� pick
select �name � !Smith!�
PersonC���

has the following e�ect on the state	 the pair mapping the variable person to the value p� is substituted by
the pair hperson� p�i� since the expression in the assignment evaluates to p��

In general� the state � is changed by an assignment v 	� expr just for the variable v� the new � applied
to the variable v results in the value of expression expr�

Since functions are also regarded as variables� it is possible to assign sets of pairs that are produced by
appropriate expressions to functions� The e�ect would be that the function is rede�ned for all arguments at
the same time� Typically� however� we want to rede�ne function values only for particular arguments� This
is achieved by the following�

Partial Assignments to Functions

Continuing the example from above� we change the name of the person p� by a partial assignment to the
name function	

set �name 	� !Jones!�
person��

Here� the state is changed as follows	 the new � function is the same for all arguments except name�
The value of �
name� is the same set of pairs as before� except that the pair hp�� !Smith!i is replaced by
hp�� !Jones!i�

In general� a partial assignment

set �f� 	� expr�� ���� fn 	� exprn�
obj�

a�ects the state � in the following way	 For all functions fi
i � � � � �n�� the new function �
fi� applied to
the object obj results in expri� All other function values of fi as well as other variables remain the same as
before the update
that is� the same as in the old � function��

��� Operations for Object Evolution

����� Object Creation

The creation of an object by create �T �
v� instantiates type T and assigns the new object to the variable
v
whose type has to be T or a supertype thereof�� Notice that object creation involves �invention� of new
OIDs� that is� the object
OID� assigned to v has to be di�erent from all existing ones�� Note that� since the
create operation does not a�ect the membership in the class ObjectC� the created object is not automatically
persistent� If so required� it has to be included into a persistent class afterwards�

In general� create changes the database state by deriving a new value of the � function from the old one
as follows	
the active domains of all types T � that are supertypes of T
and T itself� now include the new object
that

�Since we do not show OIDs to users� we do not have to insist on not reusing OIDs� Therefore� we do not have to keep track
of all existing or ever existing ones��

�

is� �
T �� 	� ��
T �� � f�
v�g� where �� represents the value of � before the update�� Therefore� the newly
created object is made an instance of T and all its supertypes to maintain the subset semantics of the subtype
relationship�

We intentionally combined object creation with the instantiation of a type even though the gain operation
could be used for the type assignment� if we wanted to be minimalistic� If� however� creation and instantiation
are split into two operations new
v� and gain �T �
v�� e�g��

new
newobj��gain �PersonT �
newobj�

a problem arises w�r�t�
static� type checking	 since new
newobj� creates an object of type ObjectT the
variable newobj also has to be of that type� Even though gain makes the new object an instance of
PersonT � the
static� type of the variable newobj remains ObjectT � Therefore we have to change the
static type associated with the variable in order to allow use of PersonT �operations on newobj by a �cast�
operation� We combined the three statements into the create operator�

����� Dynamically Acquiring More Types � gain �

The gain operation is used to dynamically establish new instance"type relationships between objects and
types� It does not change any values except some active domains� Therefore� gain �T �
obj� changes the
state � just by including obj in the values of �
T �� for all supertypes T � of T
including T itself�� See the
example above�

A possible extension of the semantics could be to add the speci�cation of default values for functions that
now become applicable� Currently� none of the new functions gets a value� that is� they are all unde�ned

�� for the object obj�

����� Dynamically Loosing Types � lose �

In contrast to the gain operation� lose deletes instance"type relationships� The e�ect of the operation
lose �T �
obj� is that all functions that are de�ned on the type T or a subtype of T are no longer applicable
to the object obj� As a consequence� we have to remove each occurrence of the object obj from variables�
sets and functions� if they are related to T or a subtype� Before we go into the details� let us look at an
example	

Assume that there are three variables employees� persons� and p with the following type declarations	
A
employees� � set of Employee� A
persons� � set of PersonT � and A
p� � PersonT � Let the values of
the variables be de�ned by the expressions	

employees 	� select �salary � ���K�
EmployeeC��
persons 	� project �name� age� sex�
employees��
p 	� pick
select �salary � ���K � name � !Smith!�
EmployeeC��

Suppose that p holds an object that is also element of both set variables� The di�erence between employees

and persons is just on the type level� the object sets represented by them are the same� Smith!s retirement
by

lose �EmployeeT �
p�

has the consequence that the object representing Smith is removed from sets that are associated with the
type EmployeeT � Therefore� the object sets denoted by persons and employees become di�erent� since
Smith is still an element of persons� but not of employees anymore�

This semantics guarantees that static type checking is su�cient despite operations that change types
of objects dynamically� More intuitively� this kind of semantics implements the point of view that type
information is part of the constraints that every valid database state has to ful�ll� Once such constraints
fail to hold� the state is changed by removing the objects from variable values�

In general� the state �� after an operation lose �T �
obj� can be derived in two steps� First� the object
obj is excluded from the active domain of type T and all its subtypes� Secondly� the new values of the
variables
including functions� are speci�ed by the following recursive de�nition that goes back to the new
active domain	

�

��
v� 	�

���������
��������

�
v� v 		 T and T � ObjectT and v
 ��
T �

� v 		 T and T � ObjectT and v �
 ��
T ��
v��v

��
v��� v 		 set of T

fhx� ��
v
x��ij x
 ��
T��g v 		 T� � T�

�
v� otherwise

The idea of the derivation is to use the structure of types in order to reduce the problem of specifying the
new value of functions and sets to easier cases� This separation according to the type structure of variables
is realized by the di�erent cases�

The �rst and last cases serve as bases	 In the last case nothing changes because no objects are involved�
In the �rst case� however� v denotes an object of type T whose instance relationship is checked� If this object
still belongs to the type� the value of v remains the same� Otherwise� the second case� it is replaced by the
null value
���

If the variable denotes a set� the value of each element of this set must be derived recursively� The new
value is constructed by the union over all elements� �

Analogously� the values of functions are also checked recursively� All function values that are no longer
instances of the range type are substituted by the null value�� Notice that this can also be applied for
constructed range types� such as for the function children� In this case� the recursive derivation is evaluated
for all children of each person� Notice that we use the recursion instead of� for example� the di�erence
between sets and the active domain� since set of is a type constructor
that also allows to create sets of
sets� and we do not represent the active domain of constructed types�

As already mentioned above� we need no explicit destroy operation� since its functionality is subsumed
by the lose operation	

destroy
obj�
def
� lose �ObjectT �
obj�

There is a choice how to specify the lose operation� In the derivation above we changed not only the range of
functions� but also the domain� Since destroying an object changes all functions that were de�ned for it� the
identi�er does no longer occur in any function	 I�e�� no pair with the identi�er as the �rst component remains
in the set of function mappings in the state �� Therefore� we can reuse the identi�ers of deleted object� On
the other hand� we could also leave the domain of functions unchanged� because due to the type�checking the
application of removed functions is not possible anyway	 I�e�� the set of pairs that represents the functions
in the state � is not changed� Then we cannot reuse of object identi�ers� but we could make use of already
speci�ed function values in case that an object gains a lost type back again�

� Modeling Classes and Views

Now that we have given the semantics of update operators� let us see how they maintain consistency w�r�t�
classes� views� and the subclass relationship� Even though the class is a central concept in a database
schema� formally it is a derived concept that can be de�ned using objects and functions� We introduce a
new abstract object type ClassT whose instances represent classes and that includes the following functions	
cname� member type� su�p� pmemb� and bases�

The function cname returns the name of a class� and member type the type that is associated to the
class members� The semantics and the values of the functions su�p� pmemb� and bases are described in the
next subsections� where also is shown that the extent of a class as well as the subclass relationship can be
derived from these functions�

Classes can be constrained by class predicates� which might be necessary
some�classes� or necessary and
su�cient
all�classes�� For some�classes� the predicate is an integrity constraint on the members� The set
of members for an all�class� however� is conceptually determined by the class predicate� The same is valid
for views that are su�ciently de�ned by queries� In order to deal with all three kinds of classes
all�� some��

�The union ignores null values as elements�
�Similarly to sets� if in a function value the only occurrence of x is in a pair hx��i� this is semantically equivalent to the

function being unde�ned for argument x�

�

and� view�� uniformly� we �complete� the class predicate of some�classes to become necessary and su�cient�
Then� maintaining consistency w�r�t� class membership during updates can easily be achieved by the fully
determining predicate�

��� Constructing Necessary and Su�cient Class Predicates

The idea is to represent the extent of a class by a necessary and su�cient predicate su�p that decides the
class membership of objects� Therefore� the current extent of a class C can be derived on demand	 It includes
those instances of the member type of C that ful�ll the predicate su�p	

extent
C�
def
� select �su�p
C��
�
member type
C���

Formally� since the value of the function su�p is a predicate� the range of su�p is itself a function ObjectT �
bool ��

The values of the predicate su�p can be derived as follows	

Views	 For views the necessary and su�cient conditions are already speci�ed� Considering a view de�nition

de
ne view V as set�expr

the value of su�p
V � yields true for all objects in the de�ning expression� i�e�� in lambda notation

su�p
V � 	� �x�x
 set�expr

where x is a variable of type ObjectT �

All�Classes	 Similarly to views� the de�nition of all�classes already speci�es the necessary and su�cient
conditions� In case of the class de�nition

class C 	 T all C�� ���� Cn where p

the value of the function su�p is	

su�p
C� 	� �x� p
x�
n�
i��

su�p
Ci�

Notice that each all�class can also be de�ned as a view by applying the following operations

project �T �
select �p�
C� � ����Cn���

Therefore we do not need to regard all�classes di�erent from views� However� we use the kind of the
predicate shown above� because it is similar to what we will derive for some�classes anyway�

Some�Classes	 In order to obtain necessary and su�cient predicates for some�classes� we have to represent
the information about class membership given by the user in terms of the operations add and remove�
The idea is to collect for each some�class� those objects in a set that have been added explicitly� Thus�
the su�cient predicate for a some�class is the conjunction of the necessary condition
if any� and the
test whether an object is included in that auxiliary set� For a some�class C� the function pmemb
C�
returns this set of �potential members� of C� Therefore the su�cient class predicate of a class C

de�ned by

class C 	 T some C�� ���� Cn where p

looks as follows	

su�p
C� 	� �x�x
 pmemb
C� � p
x�
n�
i��

su�p
Ci�

Notice how the subclass relationship
i�e�� set inclusion among class extents� is maintained automat�
ically	 the class predicate requires membership in all superclasses� Removing objects from a class C
can be achieved by removing them from the set pmemb
C� and this automatically propagates to all
subclasses� Adding objects to class C includes them in all pmemb�sets of class C and its superclasses�

�The domain of the predicate is the prede�ned type ObjectT instead of the member type of each class� because also the
�meta��function su�p must be statically typed�

�

Examples� As a �rst example assume that we are interested besides the class PresonC just in a class
representing my friends that live in Zurich	

var sue� joe 	 PersonT �
class PersonC 	 PersonT some ObjectC�
class My ZH FriendC 	 PersonT some My FriendC where lives in � !ZH!�

Suppose the variables joe and sue denote two persons� Joe who lives in Zurich and Sue living in Geneva�
The update operation

add �joe�
My ZH FriendC��
adds Joe to the set pmemb
My ZH FriendC� and thus includes Joe in that class� However� consider the
same update for Sue	

add �sue�
My ZH FriendC��
Obviously Sue will not become a member of My ZH FriendC� since she does not satisfy the
necessary�
class predicate� Nevertheless� it is safe to include her in the set pmemb
My ZH FriendC�� In case she
afterwards moves to Zurich� she will be included as a class member automatically�	

The semantics illustrated by the second example carries over to combinations of some�classes	 Consider
the class My Reachable FriendC that denotes friends living close by
i�e�� reachable in a short amount of
time on foot by car or by plane�� We assume that this cannot be speci�ed by a predicate� therefore� we use
a some�class�

class My FriendC 	 PersonT some PersonC�
class My Reachable FriendC 	 PersonT some My FriendC�

Assuming Sue is member ofMy Reachable FriendC� because of the subclass relationship� she is also member
of My FriendC� i�e�� internally she is contained in the set pmemb
My Reachable FriendC� as well as in
pmemb
My FriendC�� Removing her from the class My FriendC by

remove �sue�
My FriendC�
results in removing her from pmemb
My FriendC�� Since My Reachable FriendC is de�ned as a sub�
class of My FriendC she also disappears from My Reachable FriendC� However� we keep her in
pmemb
My Reachable FriendC�� because this information was not explicitly changed� Therefore after
the execution of the operation

add �sue�
My FriendC�
she will again be member of My FriendC� and also of My Reachable FriendC� Again� this choice of update
semantics is consistent with our introduced view update semantics� The other choice would have been to
remove Sue from pmemb
My Reachable FriendC� also�

��� Subclass Relationship

If we derive new classes by view de�nitions� we also want to position them in the class hierarchy in order to
provide users with an appropriate picture of the enlarged database schema� This classi�cation is based on
the partial re�exive order between classes
v� that is de�ned as follows	

subc v supc
def
�
member type
subc� � member type
supc��

�
su�p
subc� � su�p
supc��
Notice that the explicit separation of subtype and subset relationship alleviates the problem of deciding
whether a class c� is a subclass of c� or not� If the predicate

member type
c�� � member type
c��
is not true� there is no need to check whether the predicate su�p
c�� subsumes su�p
c��� Therefore the
predicate subsumption� which is in general undecidable� is not to be checked in any case�

Because predicate subsumption is undecidable in general
and remains so even in quite restricted cases
�Neb��� SS����� we use an incomplete decision procedure �Ngu��� for positioning a class in a class hierarchy

resp� testing the predicate subsumption�� The predicate is decomposed into conjunctive normal form and
only those conjuncts that are known to be decidable are used� the others are ignored� This procedure
guarantees that the determined position is not wrong� However� there may be cases where the class could
have been placed further down the hierarchy�

�Another choice would have been to reject this add operation� We choose the 	optimistic� solution� because it is consistent
with the view update semantics we present below�

��

ObjectC

name

age

children

salary

courses

name

EmployeeC

MyZH-
FriendV

MyFriendC

ComplexVPersonC

Figure �	 Subschema does not include the class in the shaded area

��� Updating the Extent of Views

Till now� add and remove were applied only to some�classes� Because the extents of views and all�classes
are su�ciently de�ned� it seems unnecessary to apply add and remove to them� However� things change if
we take subschemata into consideration� A subschema
or external schema� is a part of the global conceptual
schema� It consists of a set of classes and views that ful�lls certain closure properties
like� the ranges of
functions included in the subschema must also be included� that are not discussed here any further
see e�g�
�AB��� TYI����� Applications working on subschemata that contain only parts of the class hierarchy might
need operations to change the extent of all�classes or views�

For example� consider a global schema consisting of the following classes and views	

class PersonC 	 PersonT some ObjectC�
class My FriendC 	 PersonT some PersonC�
de
ne view My ZH FriendV as select �lives in � !ZH!�
My FriendC��

Assume the subschema of an application works on the class PersonC and the view My ZH FriendV �
but excludes the class My FriendC
see Fig� ��� Because the some�class My FriendC is hidden in the
subschema de�nition� there is no way to add persons into the view My ZH FriendV until now� In order
to handle such cases we extend the semantics of the operations add and remove such that applying these
operations to the view My ZH FriendV becomes possible�

In case of selection views
also extend� and intersection�views� the semantics of the add operation as
described above can be applied� since adding an object to the view results in adding it to all superclasses of
the view� i�e�� also the class the view is de�ned on� However� the semantics for removing an object is not
applicable� since removing it from the view but not from the class the view is de�ned on would contradict
the view de�nition� In case of union� or projection�views� that result in superclasses of the base classes� also
the add operation is not applicable� since adding objects to a projection view would make the extents of
the view and the underlying class di�er �SLT����

The problem is caused by trying to use the pmemb function for all�classes and views� Since their extent�
however� is completely determined by the class predicates� inconsistencies are bound to arise� Instead� we
have to explicitly maintain the relationship between a view and its base class
es�� This can then be used
to apply the operations add and remove to the base classes of this view� Therefore the extent of a view
remains consistent to its de�nition� i�e�� the anomalies sketched above cannot arise�

In order to get an handle which pmemb�sets of classes must be changed in case of adding or removing
objects to or from views� we use the meta function bases that yields a set of some�classes� The value of bases
can be derived by induction as follows	 We de�ne bases
c� � fcg for all some�classes c as an anchor� The
following recursive predicate derives the bases of all�classes and views that are de�ned by an expression e	

��

bases
e� 	�

��
�

e eisasome � class

bases
e�� e � project �����
e��� extend �����
e��� select �����
e��
bases
e�� � bases
e��� e � e� � e��� e� � e��

Projection views as well as views de�ned by the extend operation denote exactly the same set of objects
as the expression they are de�ned on� since the operations only change the associated type of that set�
Therefore add and remove should be propagated straightforwardly� The same is true for selection views�
Adding and removing objects to�from union and intersection views propagates to both de�ning expressions�
The problems arising especially with that default settings for intersection and union views are described in
�SLT��� in more detail� Notice that this procedure captures also view de�nitions on views�

Considering the above example� the following values of the bases function can be derived	

bases
PersonC� � fPersonCg�
bases
My FriendC� � fMy FriendCg�
bases
My ZH FriendV � � fMy FriendCg�

If we add the following de�nitions to the schema

class EmployeeC 	 EmployeeT some PersonC�
de
ne view ComplexV as

project �name�
EmployeeC �My ZH FriendV ��

the value of bases
ComplexV � is derived by the union of the bases
EmployeeC�
which is fEmployeeCg�
and the bases�value of the view My ZH FriendV
which is fMy FriendCg�� That is� the bases of a view
might contain classes that are neither sub� nor superclasses
see Fig� ���

��� Add and Remove as Derived Update Methods

Since classes are modeled by using objects and functions� we can specify the semantics of the operations
add and remove in terms of the elementary operations� That is� they are not elementary operations of our
algebra� but derived as follows
	

add �e�
class�
def
� apply to all

h
set �pmemb 	� pmemb union feg�
c�

i
�
c 	 select � � �� select �x v c�
x 	 bases
class��

and bases
c� � fcg�
c 	 ClassC�
�

remove �e�
class�
def
� apply to all

h
set �pmemb 	� select �x �� e�
x 	 pmemb��
c�

i
�
c 	 bases
class�

�

The add operation is de�ned by applying the set operation that includes the object denoted by e into the
set pmemb
c� for each class c contained in the result of the select operation� The predicate of the selection
chooses all some�classes of the database
identi�ed by the condition bases
c� � fcg� that are superclasses
of some class included in bases
class�� Thus� adding objects to a class is propagated to all its superclasses�
Removing objects from a class can be speci�ed easier� because the propagation to the subclasses is carried
out by the necessary and su�cient predicates� Therefore the semantics of the remove operation is to take
the object out of the pmemb�sets of the classes contained in bases
class��

Continuing the example� if we add a person not living in Zurich to My ZH FriendV� he�she becomes
member of the class My FriendC� but not of the view until he�she ful�lls the selection!s predicate� Removing
a person from the view ComplexV is propagated to the classes PersonC and EmployeeC�

� Related Work

In contrast to object�oriented programming languages
like C##� Ei�el� Smalltalk� our proposed operations
capture the evolution of objects� That is� the set of associated attributes or methods might change over the
life cycle of an object� These changes are propagated to all occurrences of an object� That is� the semantics

�The class ClassC belongs to the meta level and represents all classes of the database

��

is not just to change the pointer the operation is applied to� Thus� destroying objects deconstructs the object
corresponding to the delete operation in C## and changes the variables and functions pointing to this object
like the forget operation of Ei�el� According to the distinction between persistent and transient objects we
separate lose �ObjectT �
obj� that destroys all occurrences of an object from remove �obj�
ObjectC��

The proposed update operations in the Galileo model �Ghe��� are similar to ours� because they also
separate types from classes� Classes represent sets of
typed� objects and the subclass relationship is the
set inclusion that is maintained if the class extent is changed� Since they provide neither views nor any
class predicates� their classes correspond to some�classes without predicates in our model� They propose an
operation specialize for the migration of objects� However� this operation is restricted by the constraint that
the specialized type has to be a subtype of the current type of the object� Thus� that operation is more
restricted than our gain operation� because of a more restricted type system� Additionally� the operation
specialize cannot be type checked at compile"time� because the success depends on the current type of an
object� They don!t provide an operation to restrict the type according to our lose operation�

In �BSKW��� it is shown that the view update problem can be alleviated� if the system knows about
integrity constraints
that is� referential integrity in case of the relational model�� Our approach allows
updates through views� which represent a special kind of derived data
namely derived classes�� because the
implied integrity constraints are represented in the model� The general problem how of updating derived
data
see �Abi��� for a survey on this problem in the context of deductive databases� is not captured here�

Knowledge representation systems such as BACK �PSKQ��� and KRISYS �DLM��� allow to specify a
wide variety of integrity constraints� but lack powerful update mechanisms� They allow to add information
by �telling� new facts� However� because deletions can produce ambiguities� they are either forbidden
e�g��
in case of �PSKQ���� or subject to several restrictions
in case of �DLM�����

� Conclusion

In this paper we presented a set of generic update operations for an object�oriented data model that includes
class predicates
known from knowledge representation models� as well as variables
borrowed from pro�
gramming languages�� The semantics of these operations is de�ned such that the model�inherent integrity
constraints such as typing� class membership� subtype� and subclass�relationship� and class predicates can
be maintained automatically� Constraints on classes are used as membership criteria rather than integrity
constraints� That is� if changes to a member object makes the class predicate false for that object� it is re�
moved from the class
instead of rejecting the update�� Furthermore� the strict type system is also exploited
to de�ne consistent update semantics� particularly w�r�t� variables� Essentially� set variables are treated as
temporary classes� Clearly� the semantics presented here need not be the ultimate solution� Several points
have been identi�ed� where we could take other choices� The main contribution is that we
i� proposed a
complete and consistent update semantics and
ii� we identi�ed this decision space�

Besides the e�cient implementation of the proposed operations� future work will focus on set�oriented
updates� In general� set�oriented updates are hard to de�ne consistently� because interdependencies� e�g��
between qualifying predicates and updates� or between two updates in the set� often lead to non�deterministic
semantics� With only one single update operation in the apply to all iterator� we can easily de�ne consistent
semantics by proceeding in three steps	
i� identify all objects that are going to be updated�
ii� evaluate any
retrieval expression in the update statement
in the old database state��
iii� apply the actual update to the
objects� one at a time� Because steps
i� and
ii� both refer to the unique initial state before all updates� there
can be no ambiguity
order�dependence in step
iii��� This is no longer true� if we allow update sequences in
apply to all� We are working on the exact restrictions that are necessary in that latter case�

References

�AB��� M�P� Atkinson and O�P� Buneman� Types and persistence of database programming languages�
ACM Computing Surveys� ��
��	���"���� June �����

��

�AB��� S� Abiteboul and A� Bonner� Objects and views� In J� Cli�ord and R� King� editors� Proc� ACM
SIGMOD Conf� on Management of Data� pages ���"���� Denver� Co� May ����� ACM� New
York�

�Abi��� S� Abiteboul� Updates� a new frontier� In M� Gyssens� J� Paredaens� and D� van Gucht� editors�
ICDT �		
 �nd Int� Conf� on Database Theory� pages �"��� Bruges� Belgium� September �����
LNCS ���� Springer Verlag� Heidelberg�

�ACO��� A� Albano� L� Cardelli� and R� Orsini� Galileo	 A strongly�typed� interactive conceptual language�
ACM Transactions on Database Systems� ��
��	���"���� June �����

�Bee��� C� Beeri� Formal models for object�oriented databases� In W� Kim� J��M� Nicolas� and S� Nishio�
editors� Proc� �st Int�l Conf� on Deductive and Object�Oriented Databases� pages ���"���� Kyoto�
December ����� North�Holland� Revised version appeared in �Data $ Knowledge Engineering��
Vol� �� North�Holland�

�BS��� R� J� Brachman and J� G� Schmolze� An overview of the KL�ONE knowledge representation
system� Cognitive Science� �	���"���� �����

�BSKW��� T� Barsalou� N� Siambela� A� M� Keller� and G� Wiederhold� Updating relational databases
through object�based views� In Proc� ACM SIGMOD Conf� on Management of Data� pages
���"���� Denver� CO� May ����� ACM� New York�

�D���� O� Deux et al� The story of O�� IEEE Trans� on Knowledge and Data Engineering� �
��	��"����
March ����� Special Issue on Prototype Systems�

�Day��� U� Dayal� Queries and views in an object�oriented data model� In R� Hull� R� Morrison� and
D� Stemple� editors� �nd Int�l Workshop on Database Programming Languages� pages ��"����
Oregon Coast� June ����� Morgan Kaufmann� San Mateo� Ca�

�DLM��� S� Dessloch� F��J� Leick� and N� M� Mattos� A state�oriented approach to the speci�cation of
rules ans queries in kbms� Technical Report ����� ZRI� University of Kaiserslautern� July �����

�Ghe��� G� Ghelli� A class abstraction for a hierarchical type system� In S� Abiteboul and P�C� Kanel�
lakis� editors� Proc� Int� Conf� on Database Theory
ICDT�� pages ��"��� Paris� December �����
LNCS ���� Springer Verlag� Heidelberg�

�Kim��� W� Kim� A model of queries for object�oriented databases� In Proc� Int� Conf� on Very Large
Databases� pages ���"���� Amsterdam� August �����

�MCB��� M�V� Mannino� I�J� Choi� and D�S� Batory� The object�oriented functional data language� IEEE
Transactions on Software Engineering� ��
���	����� November �����

�Mey��� B� Meyer� Object�Oriented Software Construction� International Series in Computer Science�
Prentice Hall� Englewood Cli�s� �����

�Neb��� B� Nebel� Terminological reasoning is inherently intractable� Arti�cial Intelligence� ��	���"����
�����

�Ngu��� H��M� Nguyen� Classifying classes and views in class hierarchies� master thesis� Department of
Computer Science� ETH Zurich� July ����� In German�

�NP��� B� Nebel and C� Peltason� Terminological reasoning and information management� In
D� Karagiannis� editor� Information Systems and Arti�cial Intelligence
 Integration Aspects�
Ulm�Germany� March ����� LNCS ���� Springer Verlag� Heidelberg�

�PSKQ��� C� Peltason� A� Schmiedel� C� Kindermann� and J� Quantz� The BACK system revisited� Tech�
nical Report KIT�Report ��� Technical University of Berlin� Berlin� Germany� sep �����

��

�SLR���� M�H� Scholl� C� Laasch� C� Rich� H��J� Schek� and M� Tresch� The COCOON object model�
Technical report� ETH Z�urich� Dept� of Computer Science� ����� In preparation�

�SLT��� M� H� Scholl� C� Laasch� and M� Tresch� Updatable views in object�oriented databases� In
C� Delobel� M� Kifer� and Y� Masunaga� editors� Proc� Int� Conf� on Deductive and Object�
Oriented Databases
DOOD�� pages ���"���� Munich� Germany� December ����� LNCS ����
Springer Verlag� Heidelberg�

�S �O��� D�D� Straube and M�T� �Ozsu� Queries and query processing in object�oriented databases� Tech�
nical Report TR ��"��� Dept� of Computing Science� University of Alberta� Edmonton� Alberta�
Canada� April ����� To appear in ACM TOIS�

�SS��� M� Schmidt�Schau%� Subsumption in KL�ONE is undecidable� In Proc� First Int�l Conf� on
Principles of Knowledge Representation and Reasoning� pages ���"���� Toronto� Ont�� �����

�SS��a� M�H� Scholl and H��J� Schek� A relational object model� In S� Abiteboul and P�C� Kanellakis�
editors� ICDT ��� � Proc� Int�l� Conf� on Database Theory� pages ��"���� Paris� December �����
LNCS ���� Springer Verlag� Heidelberg�

�SS��b� M�H� Scholl and H��J� Schek� A synthesis of complex objects and object�orientation� In Proc� IFIP
TC� Conf� on Object Oriented Databases
DS���� Windermere� UK� July ����� North�Holland�
To appear�

�TYI��� K� Tanaka� M� Yoshikawa� and K� Ishihara� Schema virtualization in object�oriented databases�
In Proc� IEEE Data Engineering� pages ��"��� Los Angeles� February �����

�WLH��� K� Wilkinson� P� Lyngbaek� and W� Hasan� The Iris architecture and implementation� IEEE
Trans� on Knowledge and Data Engineering� �
��	��"��� March ����� Special Issue on Prototype
Systems�

��

	Title
	Abstract
	1 Introduction
	2 The COCOON Model
	2.1 Basic Concepts
	2.2 Generic Query Operations

	3 Generic Update Operations
	3.1 Systematics of Update Operators
	3.2 Formalization of the Database State
	3.3 Assignments
	3.4 Operations for Object Evolution

	4 Modeling Classes and Views
	4.1 Constructing Necessary and Su�cient Class Predicates
	4.2 Subclass Relationship
	4.3 Updating the Extent of Views
	4.4 Add and Remove as Derived Update Methods

	5 Related Work
	6 Conclusion
	References

