Skip to main content

An Environment and Studies for Exploring Auditory Representations of Multidimensional Data

  • Conference paper
Book cover Perceptual Issues in Visualization

Part of the book series: IFIP Series on Computer Graphics ((IFIP SER.COMP.))

Abstract

The field of auditory data representation has produced several intriguing proof-of-concept systems, but up until now there has been little formal research to measure the effectiveness of auditory data displays or to increase our understanding of how they work and how to improve them. Formal assessment is necessary throughout the process of developing new auditory display technologies in order to learn how to restrict the universe of possible sound attributes to those that are most effective for data representation. The capability to run quick psychometric tests to obtain quantitative figures of merit for alternative auditory representations is a requirement for auditory-display researchers engaged in the development of new technologies. For the first time, this capability is realized with a special-purpose workstation designed to generate and administer psychometric tests automatically using test patterns generated from statistically well-specified synthetic data. We describe the characteristics of one such workstation we have developed. We also describe a testing methodology we propose for the development of new auditory data displays of a type that we have been working with for the last few years. Finally, we describe a specific set of studies we are now beginning to conduct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartram, L., K. Booth, and W. Cowan. “Issues in the Design of Workstations for Psychology Experimentation.” in J. Encarnacao and G. Grinstein (eds.) Workstations for Experiments. Berlin: Springer-Verlag, 1991.

    Google Scholar 

  2. von Bismarck, G. “Timbre of steady-state sounds: a factorial investigation of its verbal attributes,” Acustica (30): 146–159, 1974.

    Google Scholar 

  3. Bly, S. “Presenting information in sound.” Proceedings of the CHI ’82 Conference on Human Factors in Computer Systems 371–375, 1982.

    Google Scholar 

  4. Bregman, A. Auditory Scene Analysis. Cambridge, MA: MIT Press, 1990.

    Google Scholar 

  5. Chowning, J. “The Synthesis of Complex Audio Spectra by Means of Frequency Modulation.” Journal of the Audio Engineering Society 21(7):526–534, 1973.

    Google Scholar 

  6. Chowning, J., and D. Bristow. FM Theory and Applications. Tokyo: Yamaha Music Foundation, 1986.

    Google Scholar 

  7. Doughty, J., and W. Garner. “Pitch characteristics of short tones II: pitch as a function of duration.” Journal of Experimental Psychology 38:478–494, 1948.

    Article  CAS  Google Scholar 

  8. Fletcher, H., and W. Munson. “Loudness, its definition, measurement and calculation.” Journal of the Acoustical Society of America 5:82–108, 1933.

    Article  Google Scholar 

  9. Frysinger, S. “Applied research in auditory data representation.” Proceedings of the SPIE/SPSE Conference on Electronic Imaging 1259:130–139, 1990.

    Google Scholar 

  10. Gaver, W. “Synthesizing Auditory Icons.” Proceedings of the International Conference on Auditory Display (ICAD) Reading, MA: Addison-Wesley, 1994.

    Google Scholar 

  11. Green, D., T. G. Birdsall, and W. P. Tanner. “Signal detection as a function of intensity and duration.” Journal of the Acoustical Society of America 29:523–531, 1957.

    Article  Google Scholar 

  12. Grey, J. An exploration of musical timbre. Stanford, CA: CCRMA/Stanford Department of Music, 1975.

    Google Scholar 

  13. Grey, J. “Multidimensional perceptual scaling of musical timbres.” Journal of the Acoustical Society of America 61:1270–1277, 1977.

    Article  CAS  Google Scholar 

  14. Grinstein, G., and S. Smith. “The perceptualization of scientific data.” Proceedings of the SPIE/SPSE Conference on Electronic Imaging 1259:190–199, 1990.

    Google Scholar 

  15. Howe, H. Electronic Music Synthesis. New York: W. W. Norton, 1975.

    Google Scholar 

  16. Fitch, T. and G. Kramer. “Sonifying the Body Electric: Superiority of an Auditory over a Visual Display in a Complex, Multivariate System.” Proceedings of the International Conference on Auditory Display (ICAD) Reading, MA: Addison-Wesley, 1994.

    Google Scholar 

  17. Le Brun, M. “Digital waveshaping synthesis.” Journal of the Audio Engineering Society 27(4):250–266, 1979.

    Google Scholar 

  18. Levkowitz, H. “Color icons: Merging color and texture perception for integrated visualization of multiple parameters.” In Visualization ’91 San Diego, CA, October 22–25 1991. IEEE Computer Society, IEEE Computer Society Press.

    Google Scholar 

  19. Levkowitz, H. and G. T. Herman. “GLHS: A generalized lightness, hue, and saturation color model.” CVGIP: Graphical Models and Image Processing 55(4):271–285, 1993.

    Article  Google Scholar 

  20. Levitt, H. “Transformed up-down methods in psychoacoustics.” Journal of the Acoustical Society of America 49, 1972.

    Google Scholar 

  21. Lindemann, E., F. Dechelle, B. Smith, and M. Starkier. “The architecture of the IRCAM Musical Workstation.” Computer Music Journal 15(3): 41–49, 1991.

    Article  Google Scholar 

  22. Lindemann, E., and M. de Cecco. “Animal: graphical data definition and manipulation in real time.” Computer Music Journal 15(3): 78–100, 1991.

    Article  Google Scholar 

  23. Lunney, D., and R. Morrison. “High technology laboratory aids for visually handicapped chemistry students.” Journal of Chemical Education 58(3):228–231, 1981.

    Article  CAS  Google Scholar 

  24. Lunney, D., and R. Morrison. “Auditory presentation of experimental data.” Pro ceedings of the SPIE/SPSE Conference on Electronic Imaging 1259:140–146, 1990.

    Google Scholar 

  25. Mansur, D., M. Blattner, and K. Joy. “Sound graphs: a numerical data analysis method for the blind.” Journal of Medical Systems 9(3):163–174, 1985.

    Article  CAS  Google Scholar 

  26. Mathews, M. The Technology of Computer Music. Cambridge, MA: MIT Press, 1969.

    Google Scholar 

  27. Mathews, M., and J. Pierce, eds. Current Directions in Computer Music Research. Cambridge, MA: MIT Press, 1989.

    Google Scholar 

  28. Mezrich, J., S. Frysinger, and R. Slivjanovski. “Dynamic representation of multivariate time series data.” Journal of the American Statistical Association 79(385):34–40, 1984.

    Article  Google Scholar 

  29. Moore, F. Elements of Computer Music. Englewood Cliffs, N J: Prentice-Hall, 1990.

    Google Scholar 

  30. Pickett, R., and G. Grinstein. “Iconographic displays for visualizing multidimensional data.” Proceedings of the 1988 IEEE Conference on Systems, Man and Cybernetics. Beijing and Shenyang, People’s Republic of China, 1988.

    Google Scholar 

  31. Plomp, R., and M. Bouman. “Relation between hearing threshold and duration of pulses.” Journal of the Acoustical Society of America 31:749–758, 1959.

    Article  Google Scholar 

  32. Plomp, R. “Timbre as a multidimensional attribute of complex tones,” in R. Plomp and G. F. Smoorenburg, eds., Frequency Analysis and Periodicity Detection in Hearing Leiden, Netherlands: Sijthoff, 1970.

    Google Scholar 

  33. Pollack, I., and L. Ficks. “Information of elementary multidimensional auditory displays.” Journal of the Acoustical Society of America 26:155–158, 1954.

    Article  Google Scholar 

  34. Puckette, M. “FTS: a real-time monitor for multiprocessor music synthesis.” Computer Music Journal 15(3): 58–67, 1991.

    Article  Google Scholar 

  35. Puckette, M. “Combining event and signal processing in the MAX graphical programming environment“. Computer Music Journal 15(3): 68–77, 1991.

    Article  Google Scholar 

  36. Reichardt, W., and H. Niese. “Choice of sound duration and silent interval for test and comparison signals in the subjective measurement of loudness.” Journal of the Acoustical Society of America 47:1083–1090, 1970.

    Article  CAS  Google Scholar 

  37. Roads, C. “Granular synthesis of sound.” Computer Music Journal 2(2):61–61,1978.

    Article  Google Scholar 

  38. Roads, C. “Asynchronous granular synthesis,” in G. De Poli, A. Piccialli, and C. Roads eds. Representations of Musical Signals. Cambridge: MIT Press, 1991.

    Google Scholar 

  39. Roads, C, and J. Strawn, eds. Foundations of Computer Music. Cambridge, MA: MIT Press, 1985.

    Google Scholar 

  40. Scaletti, C. “The Kyma/Platypus computer music workstation,” in S. Pope ed. The Well-Tempered Object: Musical Applications of Object-Oriented Software Technology. Cambridge: MIT Press, 1991.

    Google Scholar 

  41. Scaletti, C, and K. Hebel “An object-based representation for digital audio signals,” in G. De Poli, A. Piccialli, and C. Roads eds. Representations of Musical Signals. Cambridge: MIT Press, 1991.

    Google Scholar 

  42. Scaletti, C. “Using sound to extract meaning from complex data.” Proceedings of the SPIE/SPSE Conference on Electronic Imaging Vol. 1459:207–219, 1991.

    Google Scholar 

  43. Scharf, B., and S. Buus. “Audition I: stimulus, physiology, thresholds.” in K. R. Boff, L. Kaufman, and J. P. Thomas (eds.) Handbook of perception and human performance 1:14.1–14.71). New York: Wiley, 1986.

    Google Scholar 

  44. Scharf, B., and A. Houtsma. “Audition II: loudness, pitch, localization, distortion, pathology.” in K. R. Boff, L. Kaufman, and J. P. Thomas (eds.) Handbook of perception and human performance 1:15.1–15.60). New York: Wiley, 1986.

    Google Scholar 

  45. Smith, S., R. Bergeron, and G. Grinstein. “Stereophonic and surface sound generation for exploratory data analysis.” Proceedings of CHI ’90 Seattle, WA, 1990.

    Google Scholar 

  46. Smith, S., R. M. Pickett, and Marian G. Williams. “Environments for Exploring Auditory Representations of Multidimensional Data.” Proceedings of the International Conference on Auditory Display (ICAD) Reading, MA: Addison-Wesley, 1994.

    Google Scholar 

  47. Speeth, S. “Seismometer sounds.” Journal of the Acoustical Society of America 33:909–916, 1961.

    Article  Google Scholar 

  48. Stevens, S. “The Relation of pitch to intensity.” Journal of the Acoustical Society of America (6):150–154, 1935.

    Article  Google Scholar 

  49. Terhardt, E. “Pitch of pure of tones: its relation to intensity.” in E. Zwicker and E. Terhardt (eds.) Facts and Models in Hearing. New York: Springer-Verlag, 1974.

    Google Scholar 

  50. Verschuure, J., and A. A. van Meeteren. “The effect of intensity on pitch.” Acus-tica 32:33–44, 1975.

    Google Scholar 

  51. Viara, E. “CPOS: a real-time operating system for the IRC AM Musical Workstation.” Computer Music Journal 15(3): 50–57, 1991.

    Article  Google Scholar 

  52. Warren, W., and R. Verbrugge “Auditory perception of bouncing and breaking events: a case study in ecological acoustics.” Journal of Experimental Psychology (10)5:704–712.

    Google Scholar 

  53. Williams, M. Interactive Assistance for Experimentation on the Visual and Auditory Properties of Iconographic Data Displays. Dissertation, University of Massachusetts Lowell, 1992.

    Google Scholar 

  54. Williams, M., S. Smith, and G. Pecelli “Experimentally driven visual language design: texture perception experiments for iconographic displays.” Proceedings of the IEEE 1989 Visual Languages Workshop Rome, Italy, pp. 62–67.

    Google Scholar 

  55. Yeung, E. “Pattern recognition by audio representation of multivariate analytical data.” Analytical Chemistry (52)7:1120–1123, 1980.

    Article  CAS  Google Scholar 

  56. Zwislocki, J. “Temporal summation of loudness.” Journal of the Acoustical Society of America 46:413–441, 1969.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 IFIP Series on Computer Graphics

About this paper

Cite this paper

Levkowitz, H., Pickett, R.M., Smith, S., Torpey, M. (1995). An Environment and Studies for Exploring Auditory Representations of Multidimensional Data. In: Grinstein, G., Levkowitz, H. (eds) Perceptual Issues in Visualization. IFIP Series on Computer Graphics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79057-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79057-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79059-1

  • Online ISBN: 978-3-642-79057-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics