Skip to main content

Physically-Based Dynamical Models for Image Processing and Recognition

  • Conference paper
Book cover Mustererkennung 1990

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 254))

Abstract

Surface interpolation techniques provide a method of integrating and interpolating visual information, and have therefore been the focus of much research in computer vision. I show that the finite element method (FEM) may be used to derive closed-form optimal RMS error estimates of surface shape and velocity. By posing the interpolation problem using wavelets as eigenvectors of the system of equations this dosed-form solution may be computed by use of recursive application of separable quadrature mirror filters (QMF’s) to form a QMF pyramid. This solution requires only O(n log n) operations and O(n) storage locations per image Similar solutions are available for three dimensional objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Terzopoulos, The Computation of visible surface representations. IEEE Trans. PAMI, 10 (4): 417–439, 1988.

    Article  MATH  Google Scholar 

  2. R. Szeliski. Fast surface interpolation using hierarchical basis functions. IEEE Trans. PAMI, 12(6):513— 528, 1990.

    Google Scholar 

  3. R. Szeliski. Regularization uses fractal priors. AAAI ‘87, 749–754, 1987.

    Google Scholar 

  4. T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory. Nature, 317:314319, Sept. 26, 1985.

    Google Scholar 

  5. W. E. L. Grimson. An implementation of a computational theory of visual surface interpolation. Computer Vision, Graphics, and Image Processing, 22: 39–69, 1983.

    Article  Google Scholar 

  6. A. Grossmann and J. Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math, 15: 723–736, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Meyer. Principe d’incertitude, bases hilbertiennes et algegres d’operateurs. Bourbaki Seminar, No. 662, 1985–1986.

    Google Scholar 

  8. A. P. Pentland. Fractal-Based Description of Natural Scenes. IEEE Trans. PAMI, 6 (6): 661–674, 1984.

    Article  Google Scholar 

  9. A. P. Pentland. A New Sense for Depth of Field. IEEE Trans. PAMI, 9 (4): 523–531, 1987.

    Article  Google Scholar 

  10. Klaus-Jürgen Bathe. Finite Element Procedures in Engineering Analysis Prentice-Hall, 1982.

    Google Scholar 

  11. Larry J. Segerlind. Applied Finite Element Analysis. John Wiley and Sons, 1984.

    Google Scholar 

  12. A. P. Pentland. Automatic Extraction of Part Deformable Models. International Journal of Computer Vision, 4: 107–126, 1990.

    Article  Google Scholar 

  13. S. G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. PAMI, 11 (7): 674–693, 1987

    Google Scholar 

  14. A. P. Pentland and J. R. Williams. Good Vibrations: Modal Dynamics for Graphics and Animation. Computer Graphics, 23 (4): 215–222, 1989.

    Google Scholar 

  15. E. P. Simoncelli, E. H. Adelson, Non-Separable Extensions of Quadrature Mirror Filters to Multiple Dimensions Proceedings of the IEEE, 78 (4): 652–664, April 1990

    Article  Google Scholar 

  16. Bernard Friedland. Control System Design McGraw-Hill, 1986.

    Google Scholar 

  17. Masanao Aoki. Optimization of Stochastic Systems: Topics in Discrete-Time Dynamics Academic Press, second edition, 1989.

    Google Scholar 

  18. R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Transaction ASME (Journal of Basic Engineering), 82D (1): 35–45, 1960.

    Article  Google Scholar 

  19. R. E. Kalman and R. S. Bucy. New Results in Linear Filtering and Prediction Theory. Transaction ASME (Journal of Basic Engineering), 83D (1): 95–108, 1961.

    Article  MathSciNet  Google Scholar 

  20. A. Croisier, D. Esteban, and C. Galand. Perfect channel splitting by use of interpola- tion/decimation/tree decomposition techniques. In International Conference on Information Sciences and Systems, pages 443–446, Patras, August 1976.

    Google Scholar 

  21. D. Esteban and C. Galand. Application of quadrature mirror filters to split band voice coding schemes. In Proceedings ICASSP, pages 191–195, 1977.

    Google Scholar 

  22. Martin Vetterli. Multi-dimensional sub-band coding: some theory and algorithms. Signal Processing, 6 (2): 97–112, February 1984.

    Article  MathSciNet  Google Scholar 

  23. Edward H. Adelson, Eero Simoncelli, and Rajesh Hingorani. Orthogonal pyramid transforms for image coding. In Proceedings of SPIE, October 1987.

    Google Scholar 

  24. H. Gharavi and A. Tabatabai. Application of quadrature mirror filters to the coding of monochrome and color images. In Proceedings ICASSP, pages 32.8.1–32.8. 4, 1987.

    Google Scholar 

  25. Anh Tran, Kwun-Min Liu, Kou-Hu Tzou, and Eileen Vogel. An efficient pyramid image coding system. In Proceedings ICASSP, pages 18.6.1–18.6. 4, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pentland, A. (1990). Physically-Based Dynamical Models for Image Processing and Recognition. In: Großkopf, R.E. (eds) Mustererkennung 1990. Informatik-Fachberichte, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84305-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84305-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53172-2

  • Online ISBN: 978-3-642-84305-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics