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Preface 

Historically, there is a close connection between geometry and optImization. 
This is illustrated by methods like the gradient method and the simplex method, 
which are associated with clear geometric pictures. In combinatorial optimization, 
however, many of the strongest and most frequently used algorithms are based 
on the discrete structure of the problems: the greedy algorithm, shortest path 
and alternating path methods, branch-and-bound, etc. In the last several years 
geometric methods, in particular polyhedral combinatorics, have played a more 
and more profound role in combinatorial optimization as well. 

Our book discusses two recent geometric algorithms that have turned out to 
have particularly interesting consequences in combinatorial optimization, at least 
from a theoretical point of view. These algorithms are able to utilize the rich 
body of results in polyhedral combinatorics. 

The first of these algorithms is the ellipsoid method, developed for nonlinear 
programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great 
surprise when L. G. Khachiyan showed that this method can be adapted to solve 
linear programs in polynomial time, thus solving an important open theoretical 
problem. While the ellipsoid method has not proved to be competitive with the 
simplex method in practice, it does have some features which make it particularly 
suited for the purposes of combinatorial optimization. 

The second algorithm we discuss finds its roots in the classical "geometry 
of numbers", developed by Minkowski. This method has had traditionally 
deep applications in number theory, in particular in diophantine approximation. 
Methods from the geometry of numbers were introduced in integer programming 
by H. W. Lenstra. An important element of his technique, called basis reduction, 
goes in fact back to Hermite. An efficient version of basis reduction yields a 
polynomial time algorithm useful not only in combinatorial optimization, but 
also in fields like number theory, algebra, and cryptography. 

A combination of these two methods results in a powerful tool for combi
natorial optimization. It yields a theoretical framework in which the polynomial 
time solvability of a large number of combinatorial optimization problems can 
be shown quite easily. It establishes the algorithmic equivalence of problems 
which are "dual" in various senses. 

Being this general, this method cannot be expected to give running times 
comparable with special-purpose algorithms. Our policy in this book is, therefore, 
not to attempt to obtain the best possible running times; rather, it is to derive 
just the polynomial time solvability of the problems as quickly and painlessly as 
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possible. Thus, our results are best conceived as "almost pure" existence results 
for polynomial time algorithms for certain problems and classes of problems. 

Nevertheless, we could not get around quite a number of tedious technical 
details. We did try to outline the essential ideas in certain sections, which should 
give an outline of the underlying geometric and combinatorial ideas. Those 
sections which contain the technical details are marked by an asterisk in the list 
of contents. We therefore recommend, for a first reading, to skip these sections. 

The central result proved and applied in this book is, roughly, the following. 
If K is a convex set, and if we can decide in polynomial time whether a given 
vector belongs to K, then we can optimize any linear objective function over K 
in polynomial time. This assertion is, however, not valid without a number of 
conditions and restrictions, and even to state these we have to go through many 
technical details. The most important of these is that the optimization can be 
carried out in an approximate sense only (as small compensation, we only need 
to test for membership in K in an approximate sense). 

Due to the rather wide spread of topics and methods treated in this book, it 
seems worth while to outline its structure here. 

Chapters 0 and 1 contain mathematical preliminaries. Of these, Chapter 1 
discusses some non-standard material on the complexity of problems, efficiency 
of algorithms and the notion of oracles. 

The main result, and its many versions and ramifications, are obtained by 
the ellipsoid method. Chapter 2 develops the framework necessary for the 
formulation of algorithmic problems on convex sets and the design of algorithms 
to solve these. A list of the main problems introduced in Chapter 2 can be found 
on the inner side of the back cover. Chapter 3 contains the description of (two 
versions of) the ellipsoid method. The statement of what exactly is achieved 
by this method is rather complicated, and the applications and specializations 
collected in Chapter 4 are, perhaps, more interesting. These range from the main 
result mentioned above to results about computing the diameter, width, volume, 
and other geometric parameters of convex sets. All these algorithms provide, 
however, only approximations. 

Polyhedra encountered in combinatorial optimization have, typically, vertices 
with small integral entries and facets with small integral coefficients. For such 
polyhedra, the optimization problem (and many other algorithmic problems) can 
be solved in the exact sense, by rounding an approximate solution appropriately. 
While for many applications a standard rounding to some number of digits is 
sufficient, to obtain results in full generality we will have to use the sophisticated 
rounding technique of diophantine approximation. The basis reduction algorithm 
for lattices, which is the main ingredient of this technique, is treated in Chapter 
5, along with several applications. Chapter 6 contains the main applications of 
diophantine approximation techniques. Besides strong versions of the main result, 
somewhat different combinations of the ellipsoid method with basis reduction give 
the strongly polynomial time solvability of several combinatorial optimization 
problems, and the polynomial time solvability of integer linear programming in 
fixed dimension, remarkable results of E. Tardos and H. W. Lenstra, respectively. 
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Chapters 7 to 10 contain the applications of the results obtained in the 
previous chapters to combinatorial optimization. Chapter 7 is an easy-to-read 
introduction to these applications. In Chapter 8 we give an in-depth survey of 
combinatorial optimization problems solvable in polynomial time with the meth
ods of Chapter 6. Chapters 9 and 10 treat two specific areas where the ellipsoid 
method has resolved important algorithmic questions that so far have resisted 
direct combinatorial approaches: perfect graphs and submodular functions. 

We are grateful to several colleagues for many discussions on the topic 
and text of this book, in particular to Bob Bixby, Andras Frank, Michael 
JUnger, Gerhard Reinelt, Eva Tardos, Klaus Truemper, Yoshiko Wakabayashi, 
and Zaw Win. We mention at this point that the technique of applying the 
ellipsoid method to combinatorial optimization problems was also discovered by 
R. M. Karp, C. H. Papadimitriou, M. W. Padberg, and M. R. Rao. 

We have worked on this book over a long period at various institutions. We 
acknowledge, in particular, the support of the joint research project of the German 
Research Association (DFG) and the Hungarian Academy of Sciences (MTA), 
the Universities of Amsterdam, Augsburg, Bonn, Szeged, and Tilburg, Cornell 
University (Ithaca), Eotvos Lorand University (Budapest), and the Mathematical 
Centre (Amsterdam). 

Our special thanks are due to Frau Theodora Konnerth for the efficient and 
careful typing and patient retyping of the text in TEX. 

March 1987 Martin GrOtschel 
Laszlb Lovasz 
Alexander Schrijver 



Table of Contents 

Chapter O. Mathematical Preliminaries . . . 

0.1 Linear Algebra and Linear Programming 

0.2 

Basic Notation 
Hulls, Independence, Dimension 
Eigenvalues, Positive Definite Matrices 
Vector Norms, Balls 
Matrix Norms . . . . . . . 
Some Inequalities . . . . . 
Polyhedra, Inequality Systems 
Linear (Diophantine) Equations and Inequalities 
Linear Programming and Duality 

Graph Theory 

Graphs ... 
Digraphs . . 
Walks, Paths, Circuits, Trees 

Chapter 1. Complexity, Oracles, and Numerical Computation 

1.1 Complexity Theory: (!J> and JV(!J> . . . . . . . 

Problems 
Algorithms and Turing Machines 
Encoding.. .. .. 
Time and Space Complexity 
Decision Problems: The Classes [Jj> and JV(!J> 

1.2 Oracles. . . 
The Running Time of Oracle Algorithms 
Transformation and Reduction . . . . 
JV[Jj>-Completeness and Related Notions 

1.3 Approximation and Computation of Numbers 
Encoding Length of Numbers . . . . . . 
Polynomial and Strongly Polynomial Computations 
Polynomial Time Approximation of Real Numbers 

The sections and chapters marked with * are technical. We recommend that the reader 
skip these on the first reading. 

1 

1 

1 
3 
4 
5 
7 
8 
9 

11 
14 

16 

17 
18 
19 

21 

21 

21 
22 
23 
23 
24 

26 
26 
27 
28 

29 
29 
32 
33 



X Table of Contents 

1.4 Pivoting and Related Procedures 

Gaussian Elimination . . . . . 
Gram-Schmidt Orthogonalization 
The Simplex Method .... 
Computation of the Hermite Normal Form 

Chapter 2. Algorithmic Aspects of Convex Sets: 
Formulation of the Problems . . . . . . . . . 

36 

36 
40 
41 
43 

46 

2.1 Basic Algorithmic Problems for Convex Sets. . . . 47 

* 2.2 Nondeterministic Decision Problems for Convex Sets 56 

Chapter 3. The Ellipsoid Method. . . .. ..... 64 

3.1 Geometric Background and an Informal Description 66 

Properties of Ellipsoids . . . . . . . . 66 
Description of the Basic Ellipsoid Method 73 
Proofs of Some Lemmas. . . . . . . . 76 
Implementation Problems and Polynomiality 80 
Some Examples . . . . . . . . 83 

* 3.2 The Central-Cut Ellipsoid Method 86 

* 3.3 The Shallow-Cut Ellipsoid Method 94 

Chapter 4. Algorithms for Convex Bodies 102 

4.1 Summary of Results . . . . 102 

* 4.2 Optimization from Separation 105 

* 4.3 Optimization from Membership 107 

* 4.4 Equivalence of the Basic Problems. 114 
* 4.5 Some Negative Results . . . . . 118 
* 4.6 Further Algorithmic Problems for Convex Bodies . 122 
* 4.7 Operations on Convex Bodies 128 

The Sum . . . . . . . . . 128 
The Convex Hull of the Union 129 
The Intersection . . . . . . 129 
Polars, Blockers, Antiblockers 131 

Chapter 5. Diophantine Approximation and Basis Reduction . . .. 133 

5.1 Continued Fractions ............. 134 

5.2 Simultaneous Diophantine Approximation: Formulation of the 
Problems . . . 138 

5.3 Basis Reduction in Lattices 139 

* 5.4 More on Lattice Algorithms 150 



Table of Contents XI 

Chapter 6. Rational Polyhedra. . . . . . . 157 

6.1 Optimization over Polyhedra: A Preview 157 

* 6.2 Complexity of Rational Polyhedra. . . 162 

* 6.3 Weak and Strong Problems 170 
* 6.4 Equivalence of Strong Optimization and Separation. 
* 6.5 Further Problems for Polyhedra . . . . . . 
* 6.6 Strongly Polynomial Algorithms ..... 

174 

181 

188 

* 6.7 Integer Programming in Bounded Dimension 192 

Chapter 7. Combinatorial Optimization: Some Basic Examples. 197 

7.1 Flows and Cuts 197 

7.2 Arborescences 

7.3 Matching. 

7.4 Edge Coloring 
7.5 Matroids 

7.6 Subset Sums 

7.7 Concluding Remarks 

* Chapter 8. Combinatorial Optimization: A Tour d'Horizon 

* 8.1 Blocking Hypergraphs and Polyhedra 

* 8.2 Problems on Bipartite Graphs 

* 8.3 Flows, Paths, Chains, and Cuts 
* 8.4 Trees, Branchings, and Rooted and Directed Cuts 

Arborescences and Rooted Cuts. . . 
Trees and Cuts in Undirected Graphs 
Dicuts and Dijoins . . . . . . . . 

* 8.5 Matchings, Odd Cuts, and Generalizations 
Matching .... 
b-Matching . . . . . . . . . . . . 
T-Joins and T-Cuts . . . . . . . . 
Chinese Postmen and Traveling Salesmen 

* 8.6 Multicommodity Flows . . 

* Chapter 9. Stable Sets in Graphs ...... . 

* 9.1 Odd Circuit Constraints and t-Perfect Graphs 
* 9.2 Clique Constraints and Perfect Graphs 

Antiblockers of Hypergraphs . 

* 9.3 Orthonormal Representations 

* 9.4 Coloring Perfect Graphs. . . 

* 9.5 More Algorithmic Results on Stable Sets 

201 

203 

208 

210 

218 

221 

225 

225 

229 

233 

242 

242 
247 
251 

254 

255 
257 
259 
262 

266 

272 

273 

276 

284 

285 

296 

299 



XII Table of Contents 

'" Chapter 10. Submodular Functions . . . . . 

'" 10.1 Submodular Functions and Polymatroids 

'" 10.2 Algorithms for Polymatroids and Submodular Functions 
Packing Bases of a Matroid 

'" 10.3 Submodular Functions on Lattice, Intersecting, and 
Crossing Families . . . . . . . . . . . . . 

'" lOA Odd Submodular Function Minimization and Extensions 

References 

Notation Index 

Author Index 

Subject Index 

Five Basic Problems (see inner side of the back cover) 

304 

304 

308 
311 

313 

325 

331 

347 

351 

355 


