Skip to main content

From KinectTM to anatomically-correct motion modelling: Preliminary results for human application.

  • Conference paper
Games for Health

Abstract

The KinectTM sensors can be used as cost effective and easy to use Markerless Motion Capture devices. Therefore a wide range of new potential applications are possible. Unfortunately, right now, the stick model skeleton provided by the KinectTM is only composed of 20 points located approximately at the joint level of the subject which movements are being captured by the camera. This relatively limited amount of key points is limiting the use of such devices to relatively crude motion assessment. The field of motion analysis however is requesting more key points in order to represent motion according to clinical conventions based on so-called anatomical planes. To extend the possibility of the KinectTM supplementary data must be added to the available standard skeleton. This paper presents a new Model-Based Approach (MBA) that has been specially developed for KinectTM input based on previous validated anatomical and biomechanical studies performed by the authors. This approach allows real 3D motion analysis of complex movements respecting conventions expected in biomechanics and clinical motion analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cappozzo A, Della Croce U, Leardini A, Chiari L. Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture. 2005;21(2):186–96

    Google Scholar 

  2. Cappozzo A, Catani F, Croce UD, Leardini A. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech. 1995;10(4):171–178

    Article  Google Scholar 

  3. Ounpuu S, Davis R, DeLuca P. Joint Kinetics: methods, interpretation and treatment decision-making in children with cerebral pasly and myelomeningocele. Gait Posture 1996, 4:62–78

    Article  Google Scholar 

  4. Leardini A, Chiari L, Della Croce U, Cappozzo A. Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artefact assessment and compensation. 2005;21(2):212–25

    Google Scholar 

  5. Rohr, K. Incremental recognition of pedestrians from image sequences. Proc. IEEE CVPR 1993; 8–13

    Google Scholar 

  6. Regh, J. M., and T. Kanade. Model-based tracking of 2 articulated objects. Proc. IEEE CVPR 1995; 612–617

    Google Scholar 

  7. Gavrila, D. M., and L. S. Davis. Towards 3-D model-based tracking and recognition of human movement: A multi-view approach. In Proceedings of the International Workshop on Automatic Face and Gesture Recognition, Zurich, 1995

    Google Scholar 

  8. Cappozzo A, Catani F, Leardini A, Benedetti M, Della Croce U. Position and orientation in space of bones during movement: experimental artifacts. 1996, 11:90–100

    Google Scholar 

  9. Wagg D, Nixon M. Automated markerless extraction of walking people using deformable contour models. Computer Animation and Virtual Worlds. 1996, 15 (3-4):399–406

    Google Scholar 

  10. Kakadiaris I, Metaxes D. 3D human body model acquisition from multiple view. Proc. IEEE CVPR 1995, 3: 618–623

    Google Scholar 

  11. Deutscher J, Blake A, Reid I. Articulated body motion capture by annealed particle filtering. Proc. IEEE CVPR 2000, 11: 941–944

    Google Scholar 

  12. Isard M, Blake A: Visual tracking by stochastic propagation of conditional density. 4th European Conference on Computer Vision:Cambridge, UK 1996:343–356

    Google Scholar 

  13. Legrand L, Marzani F, Dusserre L: A marker-free system for the analysis of movement disabilities. Medinfo 1998, 9(2):1066–1070

    Google Scholar 

  14. Cheung G, Baker S, Kanade T: Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture. IEEE Conference on Computer Vision and Pattern Recognition: Madison, WI: IEEE 2003:77–84

    Google Scholar 

  15. Freedman, B., Shpunt, A., Machline, M., Arieli, Y., 2010. Depth Mapping Using Projected Patterns. 20100118123. Prime Sense Ltd., United States.

    Google Scholar 

  16. Shpunt, A., 2010. Depth Mapping Using Multi-beam Illumination. Prime Sense Ltd, United States. 20100020078.

    Google Scholar 

  17. Spektor, E., Mor, Z., Rais, D., 2010. Integrated Processor for 3D Mapping. Prime Sense Ltd, United States. 20100007717.

    Google Scholar 

  18. Dutta T. Evaluation of the Kinect™ sensor for 3-D kinematic measurement in the workplace. Appl Ergon. 2012; 43 (4): 645–9

    Article  Google Scholar 

  19. Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE et al. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture.2012; 36(3): 372–7

    Article  Google Scholar 

  20. Gabel M, Gilad-Bachrach R, Renshaw E, Schuster A. Full body gait analysis with Kinect. Conf Proc IEEE Eng Med Biol Soc. 2012;2012: 1964–7.

    Google Scholar 

  21. Lowes LP, Alfano LN, Yetter BA, Worthen-Chaudhari L, Hinchman W et al. Proof of concept of the ability of the kinect to quantify upper extremity function in dystrophinopathy. PLoS Curr. 2013 [Epub ahead of print]

    Google Scholar 

  22. Bonnechère B, Jansen B, Salvia P, Bouzahouene H, Omelina L, Cornelis J, Rooze M, Van Sint Jan S. What are the current limits of the Kinect sensor? In: ICDVRAT. Laval. France; 2012.

    Google Scholar 

  23. Van Sint Jan S, Salvia P, Hilal I, Sholukha V, Rooze M, Clapworthy G. Registration of 6- DOFs electrogoniometry and CT medical imaging for 3D joint modeling. J Biomech. 2002; 35(11): 1475–84.

    Article  Google Scholar 

  24. Sholukha V, Salvia P, Hilal I, Feipel V, Rooze M, Van Sint Jan S. Calibration and validation of 6 DOFs instrumented spatial linkage for biomechanical applications. A practical approach. Med Eng Phys. 2004; 26(3): 251–60.

    Article  Google Scholar 

  25. Sobczak S, Salvia P, Dugailly PM, Lefèvre P, Feipel V, Van Sint Jan S, Rooze M. Use of embedded strain gages for the in-vitro study of proximal tibial cancellous bone deformation during knee flexion-extension movement: development, reproducibility and preliminary results of feasibility after frontal low femoral osteotomy. J Orthop Surg Res. 2011; 6: 12

    Article  Google Scholar 

  26. Dugailly PM, Sobczak S, Sholukha V, Van Sint Jan S, Salvia P, Feipel V, Rooze M. In vitro 3D-kinematics of the upper cervical spine: helical axis and simulation for axial rotation and flexion extension. Surg Radiol Anat. 2010; 32(2): 141–51.

    Article  Google Scholar 

  27. Van Sint Jan S, Taddei F, Leardini A, Snoeck O, Sholukha V, Moiseev F, Juszczyk M, Salvia P, Lufimpadio JL, Feipel V, Sobczak S, Rooze M, Viceconti M. Inegrated multiscale data collection for advanced modeling of human musculoskeletal system. 4th European Congress for Medical and Biomedical Engineering. Antwerp, Belgium. 2008

    Google Scholar 

  28. Sholukha V, Leardini A, Salvia P, Rooze M, Van Sint Jan S. Double-step registration of in vivo stereophotogrammetry with both in vitro 6-DOFs electrogoniometry and CT medical imaging. J Biomech. 2006; 39(11): 2087–95.

    Article  Google Scholar 

  29. Dugailly PM, Sobczak S, Moiseev F, Sholukha V, Salvia P, Feipel V, Rooze M, Van Sint Jan S. Musculoskeletal modeling of the suboccipital spine: kinematics analysis, muscle lengths, and muscle moment arms during axial rotation and flexion extension. Spine (Phila Pa 1976). 2011; 36(6): E413–22.

    Article  Google Scholar 

  30. Sholukha V, Van Sint Jan S, Snoeck O, Salvia P, Moiseev F, Rooze M. Prediction of joint center location by customizable multiple regressions: application to clavicle, scapula and humerus. J Biomech. 2009; 42(3):319–24.

    Article  Google Scholar 

  31. Salvia P, Jan SV, Crouan A, Vanderkerken L, Moiseev F, Sholukha V, Mahieu C, Snoeck O, Rooze M. Precision of shoulder anatomical landmark calibration by two approaches: a CAST-like protocol and a new anatomical palpator method. Gait Posture. 2009; 29(4):587–91.

    Article  Google Scholar 

  32. Feipel V, Rooze M. Three-dimensional motion patterns of the carpal bones: an in vivo study using three-dimensional computed tomography and clinical applications. Surg Radiol Anat. 1999; 21(2): 125–31.

    Article  Google Scholar 

  33. Sobczak S, Rotsaert P, Vancabeke M, Van Sint Jan S, Salvia P, Feipel V. Effects of proximal row carpectomy on wrist biomechanics: a cadaveric study. Clin Biomech (Bristol, Avon). 2011; 26(7): 718–24.

    Article  Google Scholar 

  34. Coupier J, Snoeck O, Mahieu C, Moiseev F, Salvia P, Chapman T, Sholukha V, Feipel V, Rooze M, Van Sint Jan S. 3D anatomical and biomechanical model of long finger. In: ISB2011. Brussels, Belgium; 2011.

    Google Scholar 

  35. Snoeck O, Lefevre P, Salvia P, Moiseev F, Rooze M, Van Sint Jan S. Biomechanical role of the lacertus fibrosus of the bicepsbrachialis muscle. ISB2011. Brussels, Belgium; 2011.

    Google Scholar 

  36. Sholukha V, Chapman T, Salvia P, Moiseev F, Euran F, Rooze M, Van Sint Jan S. Femur shape prediction by multiple regression based on quadric surface fitting. J Biomech. 2011; 44(4): 712–8.

    Article  Google Scholar 

  37. Sobczak S, Dugailly PM, Baillon B, Lefevre P, Rooze M, Salvia P, Feipel V. In vitro biomechanical study of femoral torsion disorders: effect on femoro-tibial kinematics. Clin Biomech (Bristol, Avon). 2012; 27(10): 1011–6.

    Article  Google Scholar 

  38. Sobczak S, Dugailly PM, Feipel V, Baillon B, Rooze M, Salvia P, Van Sint Jan S. In vitro biomechanical study of femoral torsion disorders: effect on moment arms of thigh muscles. Clin Biomech (Bristol, Avon). 2013; 28(2): 187–92.

    Article  Google Scholar 

  39. Van Sint Jan S, Salvia P, Feipel V, Sobzack S, Rooze M, Sholukha V. In vivo registration of both electrogoniometry and medical imaging: development and application on the ankle joint complex. IEEE Trans Biomed Eng. 2006; 53(4): 759–62.

    Article  Google Scholar 

  40. Moiseev F, Sholukha V, Salvia P, Rooze M, Van Sint Jan S. Automated template based registration of heterogeneous data on human musculoskeletal system. In: ISB2011. Brussels, Belgium; 2011.

    Google Scholar 

  41. van der Sluijs JA, van Doorn-Loogman MH, Ritt MJ, Wuisman PI. Interobserver reliability of the Mallet score. J Pediatr Orthop B. 2006; 15(5):324–7

    Article  Google Scholar 

  42. Clark RA, Pua YH, Bryant AL, Hunt MA. Validity of the Microsoft Kinect for providing lateral trunk lean feedback during gait retraining. Gait Posture. 2013 [Epub ahead of print]

    Google Scholar 

  43. Lowes LP, Alfano LN, Yetter BA, Worthen-Chaudhari L, Hinchman W et al. Proof of concept of the ability of the kinect to quantify upper extremity function in dystrophinopathy. PLoS Curr. 2013 [Epub ahead of print]

    Google Scholar 

  44. Guerrero C, Uribe-Quevedo A. Kinect-based posture tracking for correcting positions during exercise. Stud Health Technol Inform. 2013; 184: 158–60.

    Google Scholar 

  45. Malouin F, Richards CL, McFadyen B et al. New perspectives of locomotor rehabilitation after stroke. Med Sci (Paris). 2003; 19 (10): 994–8

    Article  Google Scholar 

  46. Krautwurst BK, Wolf SI, Heitzmann DW, Gantz S, Braatz F, Dreher T. The influence of hip abductor weakness on frontal plane motion of the trunk and pelvis in patients with cerebral palsy. Res Dev Disabil. 2013; 34(4): 1198–203.

    Article  Google Scholar 

  47. Brashear A, Elovic E. Spasticity: diagnosis and management. New York: Demos Medical, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Fachmedien Wiesbaden

About this paper

Cite this paper

Bonnechère, B., Sholukha, V., Moiseev, F., Rooze, M., Van Sint, J. (2013). From KinectTM to anatomically-correct motion modelling: Preliminary results for human application.. In: Schouten, B., Fedtke, S., Bekker, T., Schijven, M., Gekker, A. (eds) Games for Health. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-02897-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-02897-8_2

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-02896-1

  • Online ISBN: 978-3-658-02897-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics