Model-Driven Software Migration:
A Methodology

Christian Wagner

Model-Driven
Software Migration:
A Methodology

Reengineering, Recovery and
Modernization of Legacy Systems

Foreword by Dr.-Ing. Hans-Georg Pagendarm

@ Springer Vieweg

Dr.-Ing. Christian Wagner
Potsdam, Germany

Also PhD thesis ,Modellgetriebene Software-Migration® at the University of Potsdam,
Chair of Service and Software Engineering

ISBN 978-3-658-05269-0 ISBN 978-3-658-05270-6 (eBook)
DOI 10.1007/978-3-658-05270-6

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Library of Congress Control Number: 2014933421

Springer Vieweg

© Springer Fachmedien Wiesbaden 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed. Ex-
empted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on
a computer system, for exclusive use by the purchaser of the work. Duplication of this pub-
lication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in
this publication does not imply, even in the absence of a specific statement, that such names
are exempt from the relevant protective laws and regulations and therefore free for general
use. While the advice and information in this book are believed to be true and accurate at
the date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper
Springer Vieweg is a brand of Springer DE.

Springer DE is part of Springer Science+Business Media.
www.springer-vieweg.de

Foreword

Model-driven software development offers the method of choice when it
comes to manage complex software production projects. However, these
concepts face some obstacles when applied to maintenance of existing soft-
ware systems. In order to ally such modern methods it is frequently assumed
that re-coding cannot be circumvent.

Christian Wagner demonstrates on a real-life example how existing soft-
ware may be imported into a modern software development suite via ap-
plication of automatic processes. Thus with modest effort a legacy code
turns into a maintainable and expandable code-base. While re-programming
would create a risk of introducing new bugs, the automatic conversion of
legacy code removes obstacles for further maintenance and development of
the code and at the same time conserves the know-how and quality con-
tained within a well-tested proven code. The automatic conversion turn out
to be by far more efficient than re-programming. Efficiency coincides with
improved reliability of the software implementation process.

The concept of model-driven-software-maintenance which is demon-
strated here, is very convincing and therefore hopefully will be widely
adopted in the near future. Latest when facing a task which requires the
integration of a variety of codes, originating from various frameworks into
one single software system, there is probably no way around the methods
of model-driven-software-maintenance.

Dr.-Ing. Hans-Georg Pagendarm

Acknowledgement

Primarily I want to thank my girlfriend Dunja and my parents for their
support that I have experienced in all ups and downs during this work.
Incidentally, I could still learn a lot about language.

From my colleagues, I would especially like to express my thanks to Hen-
ning Bordihn. Not only for his instructions and constructive criticism, but
also for his sympathetic ear, which he has always had for me. Additionally
Henning strongly aroused my interest for formal descriptions. I could learn
from him a lot about teaching and about the structure and organization of
lectures. This knowledge will remain with me all my life.

Special thanks to Sven Jorges because he is simply a friend — and of course,
for the excellent proofreading work, the regular discussions on modeling
theory (I have finally managed the way from the meta-level to a concrete
instance of this work), current research literature and common sporting
activities, whether on rocks or anywhere on a specific coordinate.

Georg Jung has a large share in planning and structuring of this thesis.
He showed me how many pages two people can bring to paper in a long
day. Moreover I would like to thank Julia Rehder for here excellent English
vocabulary and proofreading skills.

In addition, I would like to thank Hans-Georg Pagendarm who has en-
couraged me in my job at the DNW and my thesis. Without him I would
never have thought about the possibility.

Dr.-Ing. Christian Wagner

Abstract

Software has become part of our everyday daily life. Since the early days
of software development in the 50s an innumerable amount of software is
developed. In many cases, such systems are still active today which was
even not anticipated by the developers. The estimated 220 million lines
of code, that are written in a language which was born in 1959, are an
outstanding example.

Of course all of these software systems need to be maintained and adapted
to new environments. The software evolution reflects the longest phase
in the software life cycle. It begins with the delivery of the application
to the customer and ends with the exchange of the old system. Modern
development technologies can help to minimize the problems that inevitably
arise in the context of software evolution. The aim of this research is to
investigate the impact and applicability of model-driven techniques in the
field of software evolution.

This includes the design of a process model, the development and applica-
tion of tools and methods as well as the study of several concrete use cases.
The improvement in the areas of application understanding, reengineering
and migration of software are addressed. The focus is to support the syn-
chronization between the program code and the related artifacts (usually
models) which is naturally lost in classical, code-centric software mainte-
nance. Therefore, the software development and maintenance must move
towards a model-centered thinking. The synchronization is ensured by a
code generation step based on the model level.

The resulting method supports this approach and consists of five phases:
transformation of the source code into models, model analysis, abstraction
by model transformation, splitting and migration of the existing system and
code generation.

The first part — the transformation of the program code — includes the
development and application of tools from the fields of compiler construc-
tion and program analysis. The aim is to convert the source code into a
machine readable form. The result is a representation of a control flow
graph (code-model), which is visualized graphically by means of a model-

X Abstract

ing tool. Model analyzes (second phase) improve the understanding of the
application. These analyzes are based on the code-models and can be flex-
ibly adapted to the specific project situation. This includes the creation of
new ones as well as the integration of external tools. The transition to the
model level occurs in the third phase: A model abstraction step is applied.
Thereby information can be classified in the code-models and are abstracted
into a new model. The abstraction works on the programming interfaces of
the underlying libraries and is therefore called API-based abstraction.

The first three stages form the basis for the subsequent migration of the
system (step four). The migration is the remodeling of the existing software
as process model. The information obtained through the application under-
standing will guide this step. The developed process model is also partially
associated with the functionality of the existing system. After completing
this step fully executable source code is generated from the migrated models
(step five).

Contents

1

Introduction 1
1.1 Motivation: Why Software-Archeology? 1
1.2 Scientific Contribution 3
1.3 Outline of the Book 6
Fundamentals 9
2.1 Software Life Cycle 10
2.1.1 Process Models: Classical 10
2.1.2 Process Model: Continuous 13
2.1.3 Laws in the Software Life Cycle 15
2.1.4 Process Models: Research Approaches 17
2.2 Software Maintenance 19
2.2.1 Operation/Maintenance Phase 19
2.2.2 Definition of Software Maintenance 20
2.2.3 Types of Maintenance 22
2.2.4 Tasks of Software Maintenance 24
2.3 Legacy Systems oo 26
2.3.1 Characteristics of Legacy Systems 26
2.3.2 Criteria for the Evaluation of Legacy Systems 28
2.3.3 Strategies for Coping with Legacy Systems 29
2.4 Software Reengineering 29
2.4.1 Definitions of Software Reengineering 30
2.4.2 Levels of Software Reengineering 35
2.4.3 System and Application Understanding 37
2.4.4 Excursus: Business Process Reengineering 39
2.5 Software Migration 39
2.5.1 Definition of Software Migration 40
2.5.2 Migration Methods 40
2.5.3 Migration Strategies 42
2.6 The Concept of Modeling 43
2.6.1 Software Development at an Abstract Level 45

2.6.2 Model Definition 49

XII

Contents

2.6.3 Modeling Languages
2.6.4 Model Relationship
2.6.5 Model Transformation
2.6.6 Models and Software Evolution
2.7 Software Design Methodologies

2.7.1 Situational Method and Research Overview

2.7.2 Process Delivery Diagrams
2.8 Summary

Model-Driven Software Migration

3.1 Problem Description
3.2 The Model as Central Artifact
3.3 Continuous Software Development
3.3.1 Continuous Model-Driven Engineering
3.3.2 eXtreme Model-Driven Design (XMDD) . . .
3.4 Model-Driven Evolution
3.5 Model-Driven Reengineering
3.5.1 Reverse-Engineering
3.5.2 Modeling
3.5.3 Model-Driven Analysis
3.5.4 Code Generation
3.6 Model-Driven Migration
3.6.1 Model-Driven Abstraction
3.6.2 Process Modeling
3.6.3 Migration and Separation of the System . . .
3.6.4 Code Generation
3.7 Conclusion

Related Work

4.1 Analysis of Source Code
4.2 Description Languages
4.3 Reverse and Reengineering Tools
4.4 Modeling Tools
4.5 Transformation Systems and Languages
4.6 Projects in Software Migration
4.7 Analysis and Remodeling of GUIs

Case Study: DeAs

5.1 Excursus: Operation of a Wind Tunnel
52 DeAs. . . .
5.2.1 DeAs System Architecture

Contents XIIT

5.2.2 DeAs Applications and Libraries 151

5.2.3 Definition of the Measurement Program 154

5.2.4 Selection of the System Components 157

5.3 Top-Down Approach 158

5.4 Model-driven Migration with DeAs 164

5.5 Model-Driven Reengineering 165

5.5.1 Reverse Engineering 165

5.5.2 Modeling oo 177

5.5.3 Model-Driven Analysis 190

5.5.4 The Code-Model Generator 201

5.6 Model-Driven Migration 215

5.6.1 API-based Abstraction 216

5.6.2 Preparing to Migrate 224

5.6.3 Create Process Models and Migration of DeAs . 228

5.6.4 Remodeling of the DeAsManagers. 228

5.6.5 Remodelingof An_an 233

5.6.6 Rules for Process Modeling and Migration 236

5.7 Results of the Case Study DeAs 239

6 Further Applications 241

6.1 Textedit 241

6.2 Toolbar 243

6.3 Drawing Program xFig 244

6.4 Summary 247

7 Conclusions 249

7.1 Summary 249

7.2 Future Worko 253

7.3 Result 257

Bibliography 259
Appendix

A DTD of XML description 291

B Evaluation of the DeAs system 293

Index 297

List of Figures

2.1 Waterfall model by Royce 11
2.2 Spiral model by Boehm 12
2.3 Agile processmodel oL 14
2.4 Continuous Software Engineering 18
2.5 Maintenance curve from Seacord 20
2.6 Ratio of initial development to maintenance 25
2.7 Conceptual model of software reengineering 31
2.8 Horseshoe Model L. 37
2.9 The concepts of MDA 46
2.10 Modeling Spectrum 48
2.11 Refinement of the system concept by Favre 50
2.12 The semiotic triangleo 52
2.13 Baserelationsin MDE Lo 56
2.14 Representation of an eXtended PDD 64
3.1 Process of Software Reengineering 68
3.2 Model-driven software reengineering and migration 70
3.3 jABC - Coordination Layer (Steffen et al. [SMNT07]) 76
3.4 XPDD — Phases of the Model-Driven Software Evolution . . . 83
3.5 XPDD — Model-Driven Reengineering 85
3.6 Tool chain in model-driven reengineering 85
3.7 Generalized tool chain in reverse engineering 86
3.8 XPDD - Reverse engineering phase 87
3.9 XPDD — Modeling phase. 89
3.10 XPDD — Process of analysis 91
3.11 XPDD — Code generation 93
3.12 XPDD - Overview of the Model-Driven Migration 95
3.13 XPDD — Model-driven abstraction 99
3.14 XPDD — Code Generation 103
4.1 GXL Example by Winter et al. [WKR02] 117

4.2 Architecture of the ISME [AEKO05] 121

XVI

List of Figures

4.3
44

5.1

5.2

9.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38

JABC — User interface 130
jABC — Modeling hierarchy 132
Transonic Wind Tunnel Goéttingen (DNW-TWG) 147
The monolithic core of the DeAs system 149
Properties of a wind tunnel model 155
Instrumentation of measurement values 156
Configuration of a measurement mroject 157
DeAsManager — user interface 159
DeAsManager — process model (start of application) 160
DeAsManager — process model (start of DeAs applications) . 162
Modeling — definition of a wind tunnel 163
Overview of the TF_func object (created with Doxygen) . . 169
Overview of the For loop (created with Doxygen) 170
jABC — SIBs representing elements of the C/C++ grammar . 178

Java Application Building Center (JABC) — SIB attributes . . 179
jABC — Excerpt prepared a code-model 180
Linking of Code-Models 182
JABC — Structure of the developed jJABC plug-in 183
JABC — Configuration of the plug-in 184
jABC — Database view of the plug-in 185
Number of methods per XML description 187
Number of nodes per method 188
Process graphs for the calculation of LOC metric 192
Coarse-grained process graph of McCabe calculation 193
Fine-grained process graph of McCabe calculation 194
Results of McCabe metric 195
Process model for the detection of dead code 196
Process graphs for the determination of function calls 197
An_an — Overview of function calls 198
Result of the BundleView software for DeAs libraries 199
Dependencies at different levels using Graphviz 200
Files that are related to the main function (excerpt) 201
Call hierarchy of the main function 202
Initialization of the code generator 203
Main model of the code generator 204
Code generator: transformation into a block structure 205
While loop at the end of a function 208
Variations of a reunited control flow 209
Different loop types 210
case-statement with five branches 211

List of Figures XVII

5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52
9.53
5.54
5.55
5.56

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Structure of the back-to-back testing 214
Process model of a filter 220
XView element tree starting from xv_init 222
Main window Lo o 223
Editing window L oo Lo 223
An_an — Structure of the graphical interface 224
An_an — Linking of code-models with process sequences . . . 225
Ap_au — Structure of the graphical interface 226
CORBA - Construction of the communication layer 227
CORBA — C++ Server and Java Client 227
DeAsManager — Structure 229
DeAsManager — Menu with code-models and system call . . 230
DeAsManager —main function with Benutzer object . . . 231
DeAsManager — migrated process model 232
DeAsManager — GUI of ChooseApplication-SIB 233
An_an — migrated process modelo 234
An_an — GUI of ChooseActionLoadWindTunnels-SIB 235
An_an — edit tunnel user interface 235
Textedit — User interface 242
Textedit — Structure of the graphical interface 243
Toolbar — User interface 243
xFig — User interface, 244
Number of methods per XML description 245
Number of nodes per function 245
Result of McCabe metrics 246

List of Tables

2.1
2.2

4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7

B.1
B.2
B.3
B.4

Percentage of maintenance in the software life cycle 16
Proportion of the types of maintenance 24
Summary of evaluated tools [WMPO9] 115
Evaluation criteria of the DeAs legacy system 151
DeAs — configuration of wind tunnel and test object 151
DeAs — configuration of the measurement technique 152
DeAs — define and execute a test project 153
DeAs — system libraries 154
Conversion of DeAs libraries into code-models 189
Conversion of DeAs applications into code-models 190
DeAs — Evaluation of preprocessor 293
DeAs — Evaluation of Elsa-Parsers 294
DeAs — Evaluation of jJABC-Import 295

DeAs — Evaluation of the relation of the code-models 296

List

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

of Source Code Examples

GraphML-Example of a structure description 118
GraphXML-Example 119
JavaML-Example from [Bad00, p. 6] 119
main-Function of DeAs application 160
DeAs application with the replaced main-function 161
Elsa — Extract from the AnST for statement b = 3;. 167
Elsa - XML output 171
ccparse — Programoutput Lo 171
Extract from the annotated intermediate format 172
Pseudo-code — Extract a source line from code 174
Node description and associated attributes. 175
XML edges with source and taget 176
Sloccount == 6 191
Sloccount == 8 191
Pseudo-code — Calculation of the closing brackets (part 1) . . 206
Pseudo-code — Calculation of the closing brackets (part 2) . . 207
Pseudo-code — Calculation of the closing brackets (part 3) . . 208
Pseudo-code — calculation of closing parenthesis (part 4) . . . 209
Original code 210
Generated Code 210
Creation of Panel-Elements with various parameters 217
Initialization and start of the graphical interface 218
Generating of a button with associated callback function . . . 218
Pseudo-code for finding callback functions 219
IDL — Description of the class Benutzer (excerpt) 228
DTD . . . 291

List of Abbreviations

ABC
ADM
AnST
API
ASG
AST
ASTM
BPR
BMBF
BNF
CEP
CFD
CFG
CIM
CMDE
CMM
CORBA
CSE
Ccsv
DAA
DeAs
DLR
DNW
DNW-TWG
DTD
EBNF
EMF
EPT
EU

Application Building Center

Architecture Driven Modernization
Annotated Syntax Tree

Application Programming Interface

Abstract Semantic Graph

Abstract Syntax Tree

Abstract Syntax Tree Meta-Model

Business Process Reengineering
Bundesministerium fiir Bildung und Forschung
Backus Naur Form

Complex Event Processing

Computational Fluid Dynamics

Control Flow Graph

Computation Independent Model

Continuous Model-Driven Engineering
Capture Maturity Model

Common Object Request Broker Architecture
Continuous Software Engineering
Comma-Separated Values

Data Access Allocator

Datenerfassungs- und Anlagensteuerungssoftware
Deutsches Zentrum fiir Luft- und Raumfahrt
German-Dutch Wind Tunnels

Transonic Wind Tunnel Géttingen

Document Type Definition

Extended Backus Naur Form

Eclipse Modeling Framework

Elsa Parse Tree

European Union

XXIV List of Abbreviations
GCC GNU Compiler Collection

GMF Graphical Modeling Framework
GNU GNU is not UNIX

GUI Graphical User Interface

GXL Graph eXchange Language

HPI Hasso Plattner Institut

HTML Hypertext Markup Language

IDL Interface Description Language
IML Intermediate Language

JABC Java Application Building Center
JNI Java Native Interface

KDM Knowledge Discovery Meta-Model
KTS Kripke Transitionssystem

LIF Lanuage Independent Format
LOC Lines of Code

LPC Lightweight Process Coordination
MDA Model-Driven Architecture

MDD Model-Driven Design

MDE Model-Driven Engineering

MDRE Model-Driven Reverse Engineering
MOF Meta Object Facility

NLR Nationaal Lucht- en Ruimtevaartlaboratorium
OCL Object Constraint Language
OMG Object Management Group

ORB Object Request Broker

OTA One Thing Approach

PDD Process Deliverable Diagram

PIM Platform Independent Model
PSM Platform Specific Model

PUB Platform Independent Description
QVT Query View Transformation

RCL Rigi Command Language

RFG Resource Flow Graph

RSF Rigi Standard Format

RTE Round Trip Engineering

RUP

Rational Unified Process

List of Abbreviations XXV

SDM
SiB
SLG
SOMA
PLC
Sus
SVG
TA

TU
TXL
uML
VCG
XMDD
XMI
XML
XPDD
XSL
XSLT

Software Design Methodology

Service Independent Building Block
Service Logic Graph

Service-Oriented Modeling Architecture
Programmable Logic Controller

System under Study

Scalable Vector Graphics

Tuple Attribute

Technische Universitéat

Turing eXtended Language

Unified Modeling Language
Visualization of Compiler Graph
eXtreme Model-Driven Design

XML Metadata Interchange

Extensible Markup Language

eXtended Process Deliverable Diagram
Extensible Stylesheet Language
Extensible Stylesheet Language Transformation

	Foreword
	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Source Code Examples
	List of Abbreviations

