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Foreword

Model-driven software development offers the method of choice when it
comes to manage complex software production projects. However, these
concepts face some obstacles when applied to maintenance of existing soft-
ware systems. In order to ally such modern methods it is frequently assumed
that re-coding cannot be circumvent.

Christian Wagner demonstrates on a real-life example how existing soft-
ware may be imported into a modern software development suite via ap-
plication of automatic processes. Thus with modest effort a legacy code
turns into a maintainable and expandable code-base. While re-programming
would create a risk of introducing new bugs, the automatic conversion of
legacy code removes obstacles for further maintenance and development of
the code and at the same time conserves the know-how and quality con-
tained within a well-tested proven code. The automatic conversion turn out
to be by far more efficient than re-programming. Efficiency coincides with
improved reliability of the software implementation process.

The concept of model-driven-software-maintenance which is demon-
strated here, is very convincing and therefore hopefully will be widely
adopted in the near future. Latest when facing a task which requires the
integration of a variety of codes, originating from various frameworks into
one single software system, there is probably no way around the methods
of model-driven-software-maintenance.

Dr.-Ing. Hans-Georg Pagendarm
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Abstract

Software has become part of our everyday daily life. Since the early days
of software development in the 50s an innumerable amount of software is
developed. In many cases, such systems are still active today which was
even not anticipated by the developers. The estimated 220 million lines
of code, that are written in a language which was born in 1959, are an
outstanding example.

Of course all of these software systems need to be maintained and adapted
to new environments. The software evolution reflects the longest phase
in the software life cycle. It begins with the delivery of the application
to the customer and ends with the exchange of the old system. Modern
development technologies can help to minimize the problems that inevitably
arise in the context of software evolution. The aim of this research is to
investigate the impact and applicability of model-driven techniques in the
field of software evolution.

This includes the design of a process model, the development and applica-
tion of tools and methods as well as the study of several concrete use cases.
The improvement in the areas of application understanding, reengineering
and migration of software are addressed. The focus is to support the syn-
chronization between the program code and the related artifacts (usually
models) which is naturally lost in classical, code-centric software mainte-
nance. Therefore, the software development and maintenance must move
towards a model-centered thinking. The synchronization is ensured by a
code generation step based on the model level.

The resulting method supports this approach and consists of five phases:
transformation of the source code into models, model analysis, abstraction
by model transformation, splitting and migration of the existing system and
code generation.

The first part — the transformation of the program code — includes the
development and application of tools from the fields of compiler construc-
tion and program analysis. The aim is to convert the source code into a
machine readable form. The result is a representation of a control flow
graph (code-model), which is visualized graphically by means of a model-



X Abstract

ing tool. Model analyzes (second phase) improve the understanding of the
application. These analyzes are based on the code-models and can be flex-
ibly adapted to the specific project situation. This includes the creation of
new ones as well as the integration of external tools. The transition to the
model level occurs in the third phase: A model abstraction step is applied.
Thereby information can be classified in the code-models and are abstracted
into a new model. The abstraction works on the programming interfaces of
the underlying libraries and is therefore called API-based abstraction.

The first three stages form the basis for the subsequent migration of the
system (step four). The migration is the remodeling of the existing software
as process model. The information obtained through the application under-
standing will guide this step. The developed process model is also partially
associated with the functionality of the existing system. After completing
this step fully executable source code is generated from the migrated models
(step five).
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