Skip to main content

Physical Safety in Robotics

  • Chapter
  • First Online:

Abstract

Over the last decade, safe physical Human-Robot Interaction (pHRI) has been made possible due to significant advances in mechatronics, control, and planning. One result of these developments were fully integrated safer lightweight robots that are equipped with sophisticated interaction control capabilities. These new robots have even opened up novel and unforeseen application domains, in which human and robot are sought to work and interact with each other. For this, safe physical interaction is prime. This chapter gives a brief overview on two of its central aspects: human safety from an injury and standards standpoint, and control for physical interaction with focus on interaction control and collision handling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haddadin, S., Albu-Schaffer, A., Hirzinger, G.: Requirements for safe robots: Measurements, analysis & new insights. Int. J. of Robotics Research 28(11–12) (2009) 1507–1527

    Article  Google Scholar 

  2. Bicchi, A., Tonietti, G.: Fast and soft arm tactics: Dealing with the safety- performance trade-off in robot arms design and control. IEEE Int. Conf. on Robotics and Automation Mag. 11 (2004) 22–33

    Google Scholar 

  3. Zinn, M., Khatib, O., Roth, B.: A new actuation approach for human friendly robot design. Int. J. of Robotics Research 23 (2004) 379–398

    Article  Google Scholar 

  4. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Safety evaluation of physical human-robot interaction via crash-testing. Robotics: Science and Systems Conference (2007) 217–224

    Google Scholar 

  5. Oberer, S., Schraft, R.D.: Robot-dummy crash tests for robot safety assessment. In: IEEE Int. Conf. on Robotics and Automation. (2007) 2934–2939

    Google Scholar 

  6. Haddadin, S., Albu-Schaffer, A., Haddadin, F., Roßmann, J., Hirzinger, G.: Study on soft-tissue injury in robotics. IEEE Robotics Automation Mag. 18(4) (2011) 20–34

    Article  Google Scholar 

  7. Haddadin, S., Haddadin, S., Khoury, A., Rokahr, T., Parusel, S., Burgkart, R., Bicchi, A., Albu-Schäffer, A.: On making robots understand safety: Embedding injury knowledge into control. Int. J. of Robotics Research 31 (2012) 1578–1602

    Article  Google Scholar 

  8. Haddadin, S.: Towards Safe Robots – Approaching Asimov’s 1st Law. Volume 90 of Springer Tracts in Advanced Robotics. Springer (2014)

    Google Scholar 

  9. Schneider, D., Nahum, A.: Impact studies of facial bones and skull. SAE Paper No.720965, Proc. 16th Stapp Car Crash Conference (1972) 186–204

    Google Scholar 

  10. Nahum, A.M., Gatts, J.D., Gadd, C.W., Danforth, J.: Impact tolerance of the skull and face. In: SAE Paper No.680785, Stapp Car Crash Conf. (1968)

    Google Scholar 

  11. Allsop, D., Perl, T.R.and Warner, C.: Force/deflection and fracture characteristics of the temporo-parietal region of the human head. SAE Trans. (1991) 2009–2018

    Google Scholar 

  12. Cormier, J., Manoogian, S., Bisplinghoff, J., Rowson, S., Santago, A., McNally, C., Duma, S., Bolte Iv, J.: The tolerance of the nasal bone to blunt impact. In: Annals of Advances in Automotive Medicine/Annual Scientific Conference. Volume 54. (2010) 3

    Google Scholar 

  13. Delye, H., Verschueren, P., Depreitere, B., Verpoest, I., Berckmans, D., Van- der Sloten, J., Van Der Perre, G., Goffin, J.: Biomechanics of frontal skull fracture. J. of Neurotrauma 24(10) (2007) 1576–1586

    Article  Google Scholar 

  14. Nyquist, G.W., Cavanaugh, J.M., Goldberg, S.J., King, A.I.: Facial impact tolerance and response. SAE Paper No.861896, Proc. 30th Stapp Car Crash Conference (1986) 733–754

    Google Scholar 

  15. Allsop, D., Warner, C., Wille, M., Schneider, D., Nahum, A.: Facial impact response – a comparison of the Hybrid III dummy and human cadaver. In: SAE Paper No.881719, Stapp Car Crash Conf. (1988) 781–797

    Google Scholar 

  16. Hodgson, V., Thomas, L.: Comparison of head acceleration injury indices in cadaver skull fracture. In: SAE Paper No710854, Stapp Car Crash Conf. (1971) 299–307

    Google Scholar 

  17. Nahum, A.M., Smith, R.W.: An experimental model for closed head impact injury. In: SAE Paper No.760825, Stapp Car Crash Conf. (1976)

    Google Scholar 

  18. Haddadin, S., Albu-Schaffer, A., Frommberger, M., Rossmann, J., Hirzinger, G.: The “DLR crash report”: Towards a standard crash-testing protocol for robot safety – part I+II: Results & discussions. IEEE Int. Conf. on Robotics and Automation (2009) 280-287 + 2663–2670

    Google Scholar 

  19. Kroell, C.K., Schneider, D.C., Nahum, A.M.: Impact tolerance and response of the human thorax I. In: SAE Paper No. 710851, Stapp Car Crash Conference. (1971)

    Google Scholar 

  20. Kroell, C., Scheider, D., Nahum, A.: Impact tolerance and response of the human thorax II. In: SAE Paper No.741187, Stapp Car Crash Conference. (1974) 383–457

    Google Scholar 

  21. Patrick, L.: Impact force deflection of the human thorax. SAE Paper No.811014, Proc. 25th Stapp Car Crash Conference (1981) 471–496

    Google Scholar 

  22. Nahum, A.M., Gadd, C.W., Schneider, D.C., Kroell, C.: Deflection of the human thorax under sternal impact, sae technical paper 700400. In: Int. Automot. Saf. Conf. (1970)

    Google Scholar 

  23. Cavanaugh, J., Nyquist, G., Goldberg, S., King, A.: Lower abdominal impact tolerance and response. In: SAE Paper No.861878, Stapp Car Crash Conf. (1986)

    Google Scholar 

  24. Duma, S., Schreiber, P., McMaster, J., Crandall, J., Bass, C., Pilkey, W.: Dynamic injury tolerances for long bones of the female upper extremity. Int. Research Council on Biomechanics of Injury (IRCOBI1998) (1998) 189–201

    Google Scholar 

  25. Duma, S., Crandall, J., Hurwitz, S., Pilkey, W.: Small female upper extremity interaction with the deploying side air bag. In: SAE Paper No.983148, Stapp Car Crash Conf. (1998) 47–63

    Google Scholar 

  26. Spadaro, J., Werner, F., Brenner, R., Fortino, M., Fay, L., Edwards, W.: Cortical and trabecular bone contribute strength to the osteopenic distal radius. J. of Orthopaedic Research 12 (1994) 211–218

    Article  Google Scholar 

  27. Khatib, O.: Inertial properties in robotic manipulation: An object-level framework. Int. J. of Robotics Research 14(1) (1995) 19–36

    Article  Google Scholar 

  28. Lobdell, T., Kroell, C., Scheider, D., Hering, W.: Impact response of the human thorax. Symp. on Human Impact Response (1972) 201–245

    Google Scholar 

  29. Ruedi, T.P., Murphy, W.M., et al.: AO principles of fracture management. Volume 1. AO Publishing (2007)

    Google Scholar 

  30. Lau, I., Viano, D.: Role of impact velocity and chest compression in thoraic injury. Avia. Space Environ. Med. 56 (1983) 16–21

    Google Scholar 

  31. ISO12100:2010: Safety of machinery – general principles for design – risk assessment and risk reductions (International Organization for Standardization, Geneva 2010)

    Google Scholar 

  32. ISO13849-1:2006: Safety of machinery – safety-related parts of control systems – part 1: General principles for design (International Organization for Standardization, Geneva 2006)

    Google Scholar 

  33. ISO13855:2010: Safety of machinery – positioning of safeguards with respect to the approach speeds of parts of the human body (International Organization for Standardization, Geneva 2010)

    Google Scholar 

  34. ISO10218-1:2011: Robots and robotic devices – safety requirements for industrial robots – part 1: Robots (International Organization for Standardization, Geneva 2011)

    Google Scholar 

  35. ISO/TS15066: Robots and robotic devices – Collaborative robots (International Organization for Standardization, unpublished)

    Google Scholar 

  36. ISO13482:2014: Robots and robotic devices – safety requirements for personal care robots (International Organization for Standardization, Geneva 2014)

    Google Scholar 

  37. Hogan, N.: Impedance control: An approach to manipulation: Part I – theory, Part II – implementation, Part III – applications. J. of Dynamic Systems, Measurement and Control 107 (1985) 1–24

    Article  MATH  Google Scholar 

  38. Craig, J., Raibert, M.: A systematic method for hybrid position/force control of a manipulator. IEEE Computer Software Applications Conf. (1979) 446–451

    Google Scholar 

  39. Yang, C., Gowrishankar, G., Haddadin, S., Parusel, S., Albu-Schaffer, A., Bur- det, E.: Human like adaptation of force and impedance in stable and unstable interactions. IEEE Trans. on Robotics 27(5) (2010) 918–930

    Article  Google Scholar 

  40. Stemmer, A., Albu-Schäffer, A., Hirzinger, G.: An analytical method for the planning of robust assembly tasks of complex shaped planar parts. In: IEEE Int. Conf. on Robotics and Automation. (2007) 317–323

    Google Scholar 

  41. Hogan, N.: On the stability of manipulators performing contact tasks. IEEE Int. Conf. on Robotics and Automation 4(6) (1988) 677–686

    Google Scholar 

  42. Ott, C., Mukherjee, R., Nakamura, Y.: Unified impedance and admittance control. In: IEEE Int. Conf. on Robotics and Automation. (2010) 554–561

    Google Scholar 

  43. Kurfess, T.R.: Robotics and Automation Handbook. CRC press (2010)

    Google Scholar 

  44. Caccavale, F., Natale, C., Siciliano, B., Villani, L.: Six-dof impedance control based on angle/axis representations. IEEE Trans. on Robotics and Automation, 15(2) (1999) 289–300

    Article  Google Scholar 

  45. Sentis, L., Khatib, O.: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. of Humanoid Robotics (2005) 505–518

    Google Scholar 

  46. Dietrich, A., Wimbock, T., Albu-Schäffer, A.: Dynamic whole-body mobile manipulation with a torque controlled humanoid robot via impedance control laws. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. (2011) 3199–3206

    Google Scholar 

  47. Albu-Schäffer, A., Ott, C., Frese, U., Hirzinger, G.: Cartesian impedance control of redundant robots: Recent results with the DLR-light-weight-arms. In: IEEE Int. Conf. on Robotics and Automation. Volume 3. (2003) 3704–3709

    Google Scholar 

  48. Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. of Robotics Research 26 (2007) 23–39

    Article  Google Scholar 

  49. Zollo, L., Siciliano, B., De Luca, A., Guglielmelli, E., Dario, P.: Compliance control for an anthropomorphic robot with elastic joints: Theory and experiments. J. of Dynamic Systems, Measurement, and Control 127(3) (2005) 321–328

    Article  Google Scholar 

  50. Platt Jr., R., Abdallah, M., Wampler, C.: Multiple-priority impedance control. In: IEEE Int. Conf. on Robotics and Automation. (2011) 6033–6038

    Google Scholar 

  51. Stramigioli, S.: Modeling and IPC control of interactive mechanical systems: a coordinate-free approach. Springer-Verlag New York, Inc. (2001)

    Google Scholar 

  52. Suita, K., Yamada, Y., Tsuchida, N., Imai, K., Ikeda, H., Sugimoto, N.: A failure- to-safety “kyozon” system with simple contact detection and stop capabilities for safe human – autonomous robot coexistence. In: IEEE Int. Conf. on Robotics and Automation. (1995) 3089–3096

    Google Scholar 

  53. Yamada, Y., Hirasawa, Y., Huang, S., Umetani, Y., Suita, K.: Human-robot contact in the safeguarding space. IEEE/ASME Trans. on Mechatronics 2(4) (1997) 230–236

    Article  Google Scholar 

  54. Takakura, S., Murakami, T., Ohnishi, K.: An approach to collision detection and recovery motion in industrial robot. In: Annual Conference of IEEE Industrial Electronics Society. (1989) 421–426

    Google Scholar 

  55. Morinaga, S., Kosuge, K.: Collision detection system for manipulator based on adaptive impedance control law. In: IEEE Int. Conf. on Robotics and Automation. (2003) 1080–1085

    Google Scholar 

  56. Kosuge, K., Matsumoto, T., Morinaga, S.: Collision detection system for manipulator based on adaptive control scheme. Trans. of the Soc. of Instrument and Control Engineers 39 (2003) 552–558

    Google Scholar 

  57. Lumelsky, V., Cheung, E.: Real-time collision avoidance in teleoperated whole- sensitive robot arm manipulators. IEEE Trans. on Systems, Man and Cybernetics 23(1) (1993) 194–203

    Article  Google Scholar 

  58. Strohmayr, M.: Artificial Skin in Robotics. PhD thesis, Karlsruhe Institute of Technology (2012)

    Google Scholar 

  59. De Maria, G., Natale, C., Pirozzi, S.: Force/tactile sensor for robotic applications. Sensors and Actuators A: Physical 175 (2012) 60–72

    Article  Google Scholar 

  60. Dahiya, R., Mittendorfer, P., Valle, M., Cheng, G., Lumelsky, V.: Directions toward effective utilization of tactile skin: A review. IEEE Sensors J. 13(11) (2013) 41214138

    Article  Google Scholar 

  61. De Luca, A., Albu-Schäffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. (2006) 1623–1630

    Google Scholar 

  62. De Luca, A., Mattone, R.: Actuator fault detection and isolation using generalized momenta. In: IEEE Int. Conf. on Robotics and Automation. (2003) 634–639

    Google Scholar 

  63. Kuntze, H.B., Frey, C., Giesen, K., Milighetti, G.: Fault tolerant supervisory control of human interactive robots. In: IFAC Workshop on Advanced Control and Diagnosis. (2003) 55–60

    Google Scholar 

  64. Haddadin, S., Albu-Schäffer, A., Luca, A.D., Hirzinger, G.: Collision detection & reaction: A contribution to safe physical human-robot interaction. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. (2008) 3356–3363

    Google Scholar 

  65. Parusel, S., Haddadin, S., Albu-Schäffer, A.: Modular state-based behavior control for safe human-robot interaction: A lightweight control architecture for a lightweight robot. In: IEEE Int. Conf. on Robotics and Automation. (2011) 42984305

    Google Scholar 

  66. Mansfeld, N., Haddadin, S.: Reaching desired states time-optimally from equilibrium and vice versa for visco-elastic joint robots with limited elastic deflection. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. (2014) 3904–3911

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Haddadin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Haddadin, S. (2015). Physical Safety in Robotics. In: Drechsler, R., Kühne, U. (eds) Formal Modeling and Verification of Cyber-Physical Systems. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-09994-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-09994-7_9

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-09993-0

  • Online ISBN: 978-3-658-09994-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics