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Abstract. Automatic task-based image quality assessment has been of
importance in various clinical and research applications. In this paper,
we propose a neural network model observer, a novel concept which has
recently been investigated. It is trained and tested on simulated images
with different contrast levels, with the aim of trying to distinguish images
based on their quality/contrast. Our model shows promising properties
that its output is sensitive to image contrast, and generalizes well to
unseen low-contrast signals. We also compare the results of the proposed
approach with those of a channelized Hotelling observer (CHO), on the
same simulated dataset.

1 Introduction

Medical image analysis techniques have been largely applied to clinical diagno-
sis in a variety of imaging modalities, including mammography. An important
auxiliary task for any such application is to evaluate the image quality. Human
observers are the ideal reference, but too costly for frequent studies and in many
cases unavailable.

As a surrogate, mathematical model observers are popular among task-based
image quality assessment since 90s [1]. In a detection task, model observers are
trained to distinguish between signal-present and signal-absent images, and its
performance is used to assess image quality. However, a mathematical model
observer requires prior knowledge about the signal, which is challenging when
dealing with low-contrast images [2].

While classic model observers follow the concepts given by Barrett et al. [1],
in recent years there have been attempts to use other algorithmic concepts [3].
With the advent of wide-spread use of deep neural networks, Alnowami et al. [4]
proposed a deep learning-based model observer and highlighted its promising
performance on both clinical and simulated mammography images. However, the
model in this paper contains 5 convolutional layers and more than 570 kernels,
requiring significant computational resources, more training data and a long
training time. This motivates us to employ emerging deep learning techniques to
design a more compact model, with fewer trainable parameters. Our goal is to
train a network with affordable cost that generalizes well, and is able to identify
the presence or absence of signals in unseen lower contrast images.
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2 Materials and Methods

• Data Set. To train, validate and test the different designs of model observers
we used a synthetic database generated using an image creation pipeline from
the Conrad framework [5]. The simulation is a re-implementation of parts of a
toolbox that has been suggested previously for studies of model observers [6].
Here, a Gaussian shaped signal is modeled by

s(x, y;A, s) = Ae−
x
2+y

2

2s2 ,

and its contrast and size are parameterized by A and s, respectively. For a noisy
background two separate random image components are drawn from a normal
distribution. Noise structure is simulated for both components by convolution of
each with a cone-filter, represented as;

c(x, y) =

{

0 if |x| < 3∆x ∧ |y| < 3∆y
1√

x2+y2
otherwise

where, ∆x × ∆y denotes the pixel dimensions. One of the components is con-
sidered the background structure as it would appear as tissue in clinical images.
The other serves as noise that would originate from an image acquisition process.
Both components are weighted with constant factors and merged to background

images bi, i = 1, ..., N such that signal-present and signal-absent images I
(p)
i and

I
(a)
i , respectively, can be created as;

I
(p)
i = si + bi, I

(a)
i = bi.

All images are of size 200× 200 pixels. We simulate 5 groups of images, each
group comprising 240 signal-present images and 240 signal-absent images. Signal
intensity of the signal-present images is controlled to span 5 different levels such
that images in group 1 are of the highest contrast, while images in group 5 are of
the lowest contrast. As shown in (Fig. 1), signals in group 5 are hardly visible to
the human eye. All signal-absent images contain only background information
and are statistically similar. In order to prevent the neural network from learning
only mean or variance features, we normalize each image in a pre-processing step,
so that they all have the same mean and variance. We evenly assign one-sixth of
the data set to a testing set, and the rest are further employed as the training
and validation pool.

• Classic Model Observer. A frequently studied task for model observers is
the detection task which in its basic form involves the detection of a known signal
at a known location. Based on the performance of a model observer on a selected
data set a certain degree of image quality can be assessed [7]. The channelized
Hotelling observer (CHO) is a group of observers that produce its decision metric
from a feature description of the image data. The well-known Laguerre-Gauss
channels [8] produce a set of rotationally-invariant features. Thus well applicable
for Gaussian signal shapes [9], we compute scores for all tested contrast levels
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Fig. 1. From left to right: Examples images from highest to lowest contrast (groups 1-5)
with signal present (first row), and signal absent (second row). The images shown above
are aimed for better visualization, while the actual data are normalized as described
in the text.

using such a classic model observer, namely, a CHO with 10 Laguerre-Gauss
channels. The width parameter that controls the area which is effectively taken
into account for the feature computation is selected as 4s, where s is the size
parameter of the signal.

The detectability index SNRλ is associated with a model observer via its test
statistic λ [7]. It is a figure of merit of how separable the two groups are w.r.t.
λ and is defined as:

SNRλ =
E(λ|signal)− E(λ|no signal)

√

0.5 (Var(λ|signal) + Var(λ|no signal))
.

We choose this model observer and its figure of merit for comparison with
the proposed approach using a neural network.

• Neural Network Architecture and Training Strategy. In this paper, we pro-
pose a convolutional neural network with 2 convolutional layers. The first con-
volutional layer has 6 kernels of size 11 × 11, followed by a rectified linear unit
(ReLu) activation, batch normalization and an 8 × 8 max-pooling with 2 × 2
stride. The second convolutional layer has 3 kernels of size 5 × 5, followed by
ReLu activation, batch normalization and a 2× 2 max-pooling with 2× 2 stride.
The output is then passed to two fully connected layers to reduce the dimension
to 2 corresponding to the number of classes. A softmax layer is employed as
the final classification layer, with a cross entropy loss function (see Fig. 2). This
neural network serves as a model observer and predicts a score between 0 to
1.0 as to how likely the image contains a signal. In validation a classification is
achieved based on a probability threshold of 0.5.

In order to train the network, we employ the Adam optimizer, with the
learning rate set to 1e−5. The neural network is trained to a maximum of 300
epochs, and after 100 epochs, an early stopping criterion is called if the validation
loss has not improved in the preceding 20 epochs. To evaluate the robustness
of the neural network and to detect signals in unseen lower contrast images, we
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always leave out group 5 from the training and validation data sets. A 5-fold
cross validation is carried out and consequently, five different sets of weights are
trained for our network. We employ these as five individual models in the test
phase, using samples from group 5 in the test set.

Besides the probability output from the network itself as a measure of detec-
tion confidence, these outputs were also considered as decision scores. By this
analogy, SNRλ can be evaluated for the neural network as well, which allows to
qualitatively compare both methods for different contrast levels.

Fig. 2. Illustration of the neural network structure

3 Results

We test both classic and neural network based model observers on the test data
samples which are separated randomly before the training takes place. As we
do 5-fold cross validation in training, we further combine the results from 5
different weight sets by averaging the softmax scores sample-wise. In (Tab. 1)
we show its classification accuracy on the test data with adjusted threshold. The
accuracy and sensitivity show very good performance in the first 3 groups and
decrease as contrast levels go lower. (Fig. 3) shows typical training curves in our
experiments, where in this case early stopping criterion was called at epoch 140.

(Tab. 2) shows SNRλ values for both classic model observer and our proposed
neural network. It can be seen that both models have high SNRλ on higher
contrast levels, and lower SNRλ on contrast level 4 and 5. Our proposed neural
network’s ability to distinguish signal-present images from signal-absent images
shows a comparable decreasing trend to the classic model observer. Furthermore,
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Fig. 3. Train and validation accuracy along training epochs

Table 1. Performance of the combined neural network model on test data

Contrast Level Accuracy Accuracy(CMO) Sensitivity Specificity

1 (highest) 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0

4 0.975 1.0 0.975 0.975

5 (lowest) 0.9 0.95 0.9 0.9

The result of our novel model observer suggests the presence of a significant
difference between level 1-3, and the two lowest contrast levels, than within level
1-3, which can be seen as alternative reference to human performance (see Fig. 1).

4 Discussion

In this paper, we propose a neural network as a model observer. The network
is trained with simulated images of four different contrast levels and tested on
images with similar contrast, as well as an unseen lower contrast. The results
highlight the model’s potential for predicting human performance qualitatively
as its classification performance declines with the image contrast, while still being
able to detect signals in some of the very low-contrast images. Furthermore, the
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Table 2. SNRλ on test results from both model observers

Contrast Level Classic Model Observer Proposed Neural Network

1 (highest) 10.7 10.5

2 8.0 10.3

3 6.5 9.4

4 5.0 6.1

5 (lowest) 3.4 2.0

performance is comparable to a classic model observer. Compared with other
techniques, our model requires little knowledge about the signal and demands
only reasonable training time. We believe our proposed model observer can also
be applicable to clinical data, to assess image quality, among other tasks. For
instance, training a network on simulated high- and low-contrast images and then
evaluating it on real mammography images, to distinguish between high and low
contrast samples, may provide a means for automatically detecting lesions and
microcalcifications, which will be a topic of future work.
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