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Abstract. Analyzing knee cartilage thickness and strain under load
can help to further the understanding of the effects of diseases like Os-
teoarthritis. A precise segmentation of the cartilage is a necessary pre-
requisite for this analysis. This segmentation task has mainly been ad-
dressed in Magnetic Resonance Imaging, and was rarely investigated on
contrast-enhanced Computed Tomography, where contrast agent visual-
izes the border between femoral and tibial cartilage. To overcome the
main drawback of manual segmentation, namely its high time invest-
ment, we propose to use a 3D Convolutional Neural Network for this
task. The presented architecture consists of a V-Net with SeLu activa-
tion, and a Tversky loss function. Due to the high imbalance between
very few cartilage pixels and many background pixels, a high false posi-
tive rate is to be expected. To reduce this rate, the two largest segmented
point clouds are extracted using a connected component analysis, since
they most likely represent the medial and lateral tibial cartilage surfaces.
The resulting segmentations are compared to manual segmentations, and
achieve on average a recall of 0.69, which confirms the feasibility of this
approach.

1 Introduction

Patients suffering from Osteoarthritis (OA) experience pain in their joints due
to the degeneration of cartilage and bones. To better understand how OA is
affecting the knee joint, it can be analyzed under load, because it then shows
different mechanical properties compared to the unloaded case [1]. This analysis
can be realized using weight-bearing in-vivo cone-beam computed tomography
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(a) (b) (c)

Fig. 1. Example volume and segmentation. (a) Contrast-enhanced gray-scale
image. (b) Ground truth segmentation of bone and cartilage (red), zoomed im-
age below. (c) 3D visualization of the segmentation in sagittal (top) and axial
(bottom) view.

(CBCT) acquisitions with injected contrast agent visualizing the thin line be-
tween femoral and tibial cartilage (Fig. 1a).

A prerequisite for the analysis of cartilage is a prior segmentation of the
knee’s structures. The segmentation of cartilage resp. its surface has mainly
been investigated in Magnetic Resonance (MR) acquisitions [2]. Since the con-
ventional manual labeling of cartilage in CBCT is very time consuming, (semi-)
automatic approaches using machine learning have been developed. Acetabular
cartilage in the hip joint was segmented using a shape-based approach and prior
knowledge [3], or by applying a seed-growing algorithm [4], both exploiting the
specific shape of the hip joint. Regarding the segmentation of the thin contrast
agent line in knee CBCT, Myller et al. [5] were one of the first to apply a semi-
automatic approach based on model registration and intensity changes. Their
approach yielded good results on high resolution unloaded CT images segment-
ing the whole femoral and cartilage surface.

In contrast to this, this work aims to segment only the region of the contrast
agent line where femoral and tibial cartilage are in contact. Consequently, the
main challenge is the high imbalance in the data between the small contrast agent
line and the large background. We propose an automatic segmentation based
on a 3D volumetric convolutional neural network. The network is trained and
evaluated on manual segmentations of contrast enhanced knee CBCT volumes.
Since the resulting segmentations contain many false positives as expected due
to the high class imbalance, a post processing step of extracting the largest
connected point clouds is applied.

2 Materials and methods

2.1 Data

The dataset used in this work was acquired under an IRB-approved protocol, con-
taining in total 40 CBCT scans of 8 subjects in a supine (s) or weight-bearing (w)
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Fig. 2. Proposed architecture.

position. The C-arm (Artis Zeego, Siemens Healthcare GmbH, Erlangen, Ger-
many) acquired 496 (s)/248 (w) projections of size 1240×960 pixels with isotropic
pixel size of 0.308 mm on a calibrated vertical (s)/horizontal (w) trajectory. Con-
trast agent was injected in the knee to visualize the outline of soft tissues. The
reconstructions had a size of 5123 voxels with an isotopic spacing of 0.2 mm.

The tibia and the thin contrast agent line where tibial and femoral cartilage
are in contact were manually segmented slice by slice in the sagittal view by an
expert (Fig. 1b, c). In total, only 0.18% of all voxels belonged to the cartilage
surface (= positive voxels), resulting in a high imbalance in the annotations.

The dataset was divided into 70%−10%−20% for the training/validation/test
group, with no subject being represented in both training/validation and test.
Due to GPU memory restrictions, the data had to be sub-sampled into smaller
volumetric patches of size 1003. To address the high class imbalance, for training
and validation the data was oversampled by using 70% patches that have a
randomly picked positive voxel in the center, and 30% all negative patches.
Four patches per volume were extracted for training and validation, and data
augmentation was applied to the training patches with random rotations of 90◦,
180◦, and 270◦. For testing, the whole volumes were divided into disjoint patches.

2.2 Multi-channel volumetric neural network

The architecture we used was a VNet [6], an extension of UNet for volumetric
data (Fig. 2). It takes advantage of 3D convolutions, fully connected connections
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and modified types of residual connections. Introducing skip connections between
encoder and decoder path produced results correctly located and at the same
time with more confidence in the prediction. The number of convolutions and
several stages were adapted to the task of cartilage segmentation. SeLu was
used as the activation function showing a stable and relatively fast convergence.
Finally, AMSGrad was chosen as the optimization scheme, since it outperformed
the ADAM traditionally used on VNet.AMSGrad proved that adding the concept
of memory for a highly imbalanced dataset produced better results and a faster
convergence [7]. To avoid overfitting, dropout was added with a value of 60%.

2.3 Loss function

The Tversky index [8] described by Equation 1 was chosen as loss function since
it is able to work with highly imbalanced data. pni, ppi represent the negative
and positive voxels of the prediction, gni, gpi are the negative and positive voxels
in the ground truth annotation. Tversky directly takes into account the relation
between False Positive (FP) and False Negatives (FN) predictions and proposes
parameters α and β to manage the trade-off between both errors. For this specific
case, the highest performance was achieved using α = 0.4 and β = 0.6.

T (α, β) =

∑N
i=1 pnigni∑N

i=1 pnigni + α
∑N

i=1 pnigpi + β
∑N

i=1 ppigni
(1)

2.4 Connected component analysis

To reduce the high number of false positive predictions due to data imbalance,
the resulting segmentations were post-processed with a connected component
analysis. Since the two surfaces of medial and lateral cartilage are expected to be
the largest segmented connected point clouds, all but the two largest connected
components were discarded. If this assumption didn’t hold, a manual selection
of the point clouds corresponding to the cartilage surface was performed.

3 Results

To evaluate the network’s performance the metrics accuracy, precision, recall,
and dice index were computed. An accuracy of 99% was achieved due to the
high number of negatives correctly classified. An average recall of 0.69, precision
of 0.24, and dice index of 0.35 were achieved. Figure 3a shows one slice of the
network output containing many false positives. After the connected component
analysis, the ground truth labels and the predictions show a high overlap (Fig. 3b
and c). The connected component analysis successfully chose the correct patches
in most of the test cases, and only one had to be adapted manually.
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(a) (b) (c)

Fig. 3. (a) Sagittal slice overlaid with network output (blue). (b) Overlay of
ground truth (red) and final output (blue) in a sagittal slice, overlap marked in
yellow. (c) 3D view of ground truth (red) and final output (blue).

4 Discussion

The proposed network shows promising results for the task of knee cartilage sur-
face segmentation. Despite the use of oversampling and Tversky loss, the high
imbalance still led to a high false positive rate. Using mainly patches contain-
ing positive voxels for training led the model to learn that even patches in the
periphery of the knee joint should contain positive voxels (Fig. 3a). Since these
peripheral false segmentations are small and closely connected, the connected
component analysis applied in post-processing was able to remove them and
predict the desired cartilage segmentation in a stable way (Fig. 3b). Only the
false positives in the segmentation’s proximity could not be removed (Fig. 3c).

We see the connected component post-processing step as an intermediate so-
lution. In future, we want to investigate an enhancement of the network using
the prior knowledge about the segmentation being a 1D continuous line in the
sagittal view. This can be achieved following the learning with known opera-
tors paradigm [9] by including either the connected component analysis or a
polynomial fitting step directly into the network.

An additional reason for the high false positive rate is the current way of
dividing the volume into patches, thereby restraining the network from learning
the spatial relation of the cartilage contact area between femur and tibia. The
border between patches can even be seen in the resulting segmentation (Fig. 3c).
The reason for dividing the volume into patches is the hardware limitation due
to the large size of medical data. A solution with bigger patches or even the full
volume could be achieved using reversible networks as proposed in [10].

Note that the manual segmentations used as ground truth are one pixel thin
lines in the sagittal view, meaning that a 1-pixel shift directly results in false
predictions. However, the contrast agent in the cartilage contact area is in most
cases multiple pixels thick, leading the network to predict a point cloud instead
of only a thin line (Fig. 3b). The consequence of this is directly observable in
our reported metrics with a very low precision due to many false positives, but
also with a good recall because most of the true labels are contained in the
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predicted point clouds. As these metrics are used to compute the loss function
and therefore guide the training, we hope that the enrichment of the network with
prior knowledge or a polynomial fitting can stabilize the training and overcome
this instability.

The presented results confirm the complexity of this highly imbalanced task,
but show promising results towards a fully automatic cartilage segmentation in
CBCT. Even though there are still many false positives in the final segmentation
(Fig. 3c), the proposed method can help to facilitate and accelerate the process
of analyzing cartilage thickness in the clinical field.
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