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Abstract. The current accessibility to large medical datasets for train-
ing convolutional neural networks is tremendously high. The associated
dataset labels are always considered to be the real “ground truth”. How-
ever, the labeling procedures often seem to be inaccurate and many
wrong labels are integrated. This may have fatal consequences on the
performance of both training and evaluation. In this paper, we show
the impact of label noise in the training set on a specific medical prob-
lem based on chest X-ray images. With a simple one-class problem, the
classification of tuberculosis, we measure the performance on a clean
evaluation set when training with label-corrupted data. We develop a
method to compete with incorrectly labeled data during training by ran-
domly attacking labels on individual epochs. The network tends to be
robust when flipping correct labels for a single epoch and initiates a good
step to the optimal minimum on the error surface when flipping noisy
labels. On a baseline with an AUC (Area under Curve) score of 0.924,
the performance drops to 0.809 when 30% of our training data is mis-
classified. With our approach the baseline performance could almost be
maintained, the performance raised to 0.918.

1 Introduction

Current research highlights the vast number of datasets where corresponding
labels are partly incorrect. In the medical field this can be caused by many
different reasons, e.g., errors in the labeling procedure when retrieving from the
clinical reports. In addition, radiologists may misinterpret clinical images which
lead to incorrect ground truth [1].

Different strategies can be applied to handle datasets with noisy labels: Addi-
tional radiologists re-annotate the dataset labels to check the variability between
the original labels and the radiologists [2]. However, most datasets contain an
extensive number of images and a small fraction can only be processed. Dealing
with label noise in the training set, robust loss functions are generated [3].
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Fig. 1. Two example chest X-ray images with tuberculosis; Tuberculosis in the
right middle lung (left) and tuberculosis in the right upper lung (right). More
difficult cases may result in a wrong classification.

In this paper we implement a robust method to deal with this label noise
in the training set on a binary class problem. By randomly attacking labels in
each epoch, a fraction of noisy labels may be switched such that the network
is trained with correct labels. We use tuberculosis classification based on CXR
images and artificially insert label noise to analyse the effects of different noise
ratios.

2 Materials and methods

2.1 Datasets

For pulmonary tuberculosis classification based on chest X-ray images, there
are two public datasets available. The first, the Montgomery dataset contains
138 frontal images, 58 with and 80 without tuberculosis. The second dataset
is derived from the Shenzhen hospital including 662 X-rays. Half of the images
include tuberculosis, the other half has no evidence. The entire collection contains
800 CXR images [4].
For training purposes, we downsample all images to 256×256. We split the data
collection into 70% for training, 10% for validation, and 20% for testing. For
the experiments, we treat the corresponding dataset labels as clean without any
ratio of noise.

2.2 Network and Training Setup

As convolutional neural network, we use a densly-connected model (DenseNet)
with 121 layers [5]. We load the ImageNet pretrained weights before starting
the training. The input image is accordingly normalized and provided in the
three input channels. The output layer of the network is reduced such that one
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sigmoidal unit is returned. During training we use the Adam optimizer [6] (β1 =
0.9, β2 = 0.999) and a learning rate of 10−4. We stop the training and jump back
to the best epoch if the validation accuracy does not improve after a patience of
8 epochs. We apply the binary cross-entropy function to predict the loss. Each
batch is filled with 16 examples. The performance on the test set is evaluated
with the area under ROC curve (AUC).

2.3 Label Noise

Many medical datasets include incorrectly labeled data. As we assume to have a
clean dataset, we artificially inject a portion of label noise to the data and mea-
sure the performance to see the effects on the performance. For all experiments,
label noise is only applied to the training set. The labels of the validation set are
kept such that we can retrieve our best model. An important factor to evaluate
a model is to measure the performance on clean labels. Often, this clean test set
can not be guaranteed as the whole dataset is corrupted. Since we artificially
integrate label noise on the training data only, our model can be correctly eval-
uated and the returned performance scores can be considered as valid.

Assuming we have the clean labels li for all examples i, we define two flip
probabilities pp = p(l̂i = 0|li = 1) and pn = p(l̂i = 1|li = 0). The two parameters
describe how many labels are incorrect before we start the training process. In
our experiments we simplify the problem such that the same ratio of positive
and negative cases are flipped: p1(e = 1) = pp = pn. First, we train our baseline
model on the clean, original labels. We reach an AUC of 0.924. Inducing higher
ratios of label noise the performance drops as can be seen in Table 1. Even if a
high amount of labels are incorrect (e.g. p1(e = 1) = 0.5), the model can classify
many examples correctly.

p1(e = 1) 0.0 0.1 0.2 0.3 0.4 0.5

AUC 0.924 0.894 0.835 0.809 0.791 0.775

Table 1. AUC score when the labels were flipped with probability p1 before
training.

2.4 Individual Label Attacks

The model is widely robust to a certain amount of label noise. We hypothesize
that individual, epoch-wise label attacks make the model even more stable in
terms of the classification performance. Therefore, we define a new probability
p2(e = 1), which changes the label for a single epoch only. In this case the
probability is tremendously smaller that a label is incorrect for the entire training
process. We measure the performance based on different epoch-wise noise ratios
p2(e = 1) when we have no prior label noise (p1(e = 1) = 0).
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p2(e = 1) 0.1 0.2 0.3 0.4 0.5 0.6

AUC 0.901 0.917 0.888 0.905 0.639 0.475

Table 2. AUC score when the labels were flipped in each epoch with probability
p2.

In Table 2, we see that training with individual, epoch-wise attacks is sig-
nificantly more robust than constant noise over the examples. Even if we flip in
each epoch with a probability p2(e = 1) = 0.4, the performance can nearly reach
the baseline performance. However, for experiments with p2(e = 1) ≥ 0.5, the
performance significantly drops.

Individual Label Attacks on Prior Label Noise: The main goal of
this paper is to show that the individual and epoch-wise label attacks help to
improve the classification performance when prior label noise is integrated in the
training set. Figure 2 visualizes the four scenarios which are possible for each
label based on prior noise with p1 and the epoch-wise label flips with p2.

Clean Label Corrupt Label
𝑝1

Corrupt 
Label

Clean 
Label

Clean 
Label

Corrupt 
Label

𝑝2 𝑝2

Robustness Improvement

Fig. 2. Label Attack Strategy: The dataset includes prior noise with a certain
noise rate (blue blocks). Flipping a label in one epoch ends up in one of the
four scenarios: A corrupted/clean label derived from a clean label or a cor-
rupted/clean label derived from a corrupted label (red blocks).

Probability p2 derivation: In most datasets, the label noise ratio is un-
known. For the determination of the label flip probability p2, we can derive
the value without knowledge of the label noise ratio. For the p2 determination
we define a sample flip minimum and maximum. This can be derived from the
binomial distribution

B(k|p, n) =
n!

k! · (n− k)!
· pk(1− p)n−k, (1)

where k is the number of flips, p = p2 the flip probability, and n the number of
epochs. We use our previous experiments to see how many epochs are trained. An
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average training duration of 18 epochs is predicted (n = 18). For the prediction
of the optimal p2, we define 2 constraints:

– An example should be flipped at least once in the training (B(k = 0) ≈ 0)
– An example should be flipped less than a half in the training (B(k ≥ n

2 ) ≈ 0)

For simplification for the prediction p, we say that

B(k1 = 0) = B(k2 =
n

2
). (2)

This condition is fulfilled if the mean µ = p∗n = k1+k2

2 . Thus, we can predict
the epoch-wise flip probability

p2 =
k1 + k2

2n
=

9

36
= 0.25. (3)

According to Equation 1, we get a probability B(k1 = 0) = 6 ∗ 10−3 that
an example is never flipped in the training and a probability B(k3 ≥ n

2 ) =∑n
k=n

2

(
n
k

)
pk(1 − p)n−k = 0.0193 that an example is flipped in a half or more

epochs. We hypothesize that this fraction of examples may not contribute to
the training improvement under the condition that we have a noisy label for
B(k1 = 0) and a clean label for B(k3 ≥ n

2 ). Thus, the real probability that an
example may not contribute is a multiplication with p1 or (1− p1), respectively,
which results in a significantly smaller value.

3 Results

p1(e = 1) 0.1 0.2 0.3 0.4 0.5

AUC 0.891 0.883 0.918 0.846 0.846

AUC gain -0.003 +0.048 +0.109 +0.055 +0.071

Table 3. AUC scores when the dataset labels were flipped with a certain
probability p1 before training and attacked with an epoch wise flip probabil-
ity p2 = 0.25.

We evaluated our method with a constant p2 defined in Equation 3 under
varying noise probabilities p1. Table 3 shows the performance on the evaluation.
We apply the noise on the same labels as is the experiments in Table 1. The
best performance gain could be achieved with p1 = 0.3, from an AUC score of
0.809 to 0.918. We can see that the performance for all noise ratios significantly
improved compared to Table 1. Only for p1 = 0.1, there is no improvement.

We analyse the epoch-wise labels based on the probability p1 = 0.2. Accord-
ing to Figure 2, the labels can be categorized in four groups. The probability of
clean and corrupted labels for one epoch can be predicted with
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pclean = pcl|cl + pcl|co = (1− p1) ∗ (1− p2) + p1 ∗ p2 = 0.6 + 0.05 = 0.65, (4)

pcorrupt = pco|cl + pco|co = (1− p1) ∗ p2 + p1 ∗ (1− p2) = 0.2 + 0.15 = 0.35. (5)

The labels with probability pcl|co, meaning that a noisy label is flipped to cor-
rect in an epoch, are responsible for the performance gain. We hypothesize that
the additional epoch-wise noise with probability pco|cl is widely robust during
training.

4 Discussion

We observed that individual label attacks help to improve the performance.
Flip probability p2 was calculated according to the binomial distribution. The
number of epochs for the prediction varied during training depending, e.g., on
the label noise. As we could not find out the exact number of epochs, we used
the average duration over the past training runs. However, according to Table
2, the performance is robust for a wide range of p2.

Moreover, we artificially inserted label noise prior to training. However, label
noise may be biased, e.g., the probability of label noise on difficult examples is
higher. This bias was not considered in our experiments. Effects on the perfor-
mance may vary when label noise is directly derived from the dataset.

5 Conclusion

We showed that more label noise in the training decreases the performance on
tuberculosis classification. We implemented a robust method to increase the
performance when training with noisy labels. By flipping certain labels in each
epoch, a fraction of noisy labels were converted to correct labels. These exam-
ples contributed to the training such that the performance significantly increased.
Furthermore, the epoch-wise flips were widely robust during training, no signif-
icant performance drops existed when the epoch-wise label conversion strategy
was integrated. This method can be extended and applied on multi-label prob-
lems.

References

1. Bruno MA, Walker EA, Abujudeh HH. Understanding and Confronting Our Mis-
takes: The Epidemiology of Error in Radiology and Strategies for Error Reduction.
RadioGraphics. 2015;35(6):1668–1676.

2. Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis:
A retrospective comparison of the CheXNeXt algorithm to practicing radiologists.
PLOS Medicine. 2018 11;15(11):1–17.



Epoch-wise label attacks for robustness against label noise 7

3. Zhang Z, Sabuncu M. Generalized Cross Entropy Loss for Training Deep Neural
Networks with Noisy Labels. In: Bengio S, Wallach H, Larochelle H, et al., editors.
Advances in Neural Information Processing Systems 31; 2018. p. 8778–8788.

4. Jaeger S, Candemir S, Antani S, et al. Two public chest X-ray datasets for
computer-aided screening of pulmonary diseases. Quantitative imaging in medicine
and surgery. 2014 12;4:475–7.

5. Huang G, Liu Z, Weinberger KQ, et al. Densely Connected Convolutional Networks.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016;
p. 2261–2269.

6. Kingma D, Ba J. Adam: A Method for Stochastic Optimization; 2014. Available
from: http://arxiv.org/abs/1412.6980.

E0000

http://arxiv.org/abs/1412.6980

	Epoch-wise label attacks for robustness against label noise
	Sebastian Gündel1, Andreas Maier1

