Skip to main content

Towards Deep Learning-based Wall Shear Stress Prediction for Intracranial Aneurysms

  • Conference paper
  • First Online:
  • 1632 Accesses

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

This work aims at a deep learning-based prediction of wall shear stresses (WSS) for intracranial aneurysms. Based on real patient cases, we created artificial surface models of bifurcation aneurysms. After simulation and WSS extraction, these models were used for training a deep neural network. The trained neural network for 3D mesh segmentation was able to predict areas of high wall shear stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg P, Voß S, Janiga G, et al. Multiple aneurysms anatomy challenge 2018 (MATCH) phase II: rupture risk assessment. Int J Comput Assist Radiol Surg. 2019 05;14.

    Google Scholar 

  2. Gharleghi R, Samarasinghe G, Sowmya A, et al. Deep learning for time averaged wall shear stress prediction in left main coronary bifurcations. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI); 2020. p. 1–4.

    Google Scholar 

  3. Jordanski M, Radovic M, Milosevic Z, et al. Machine learning approach for predicting wall shear distribution for abdominal aortic aneurysm and carotid bifurcation models. IEEE J Biomed and Health Inform. 2016 12;PP:1–1.

    Google Scholar 

  4. Valette S, Chassery JM, Prost R. Generic remeshing of 3D triangular meshes with metric-dependent discrete voronoi diagrams. IEEE Trans Vis Comput Graph. 2008 03;14:369–381.

    Google Scholar 

  5. Schneider L, Niemann A, Beuing O, et al. MedMeshCNN – enabling MeshCNN for medical surface models. ArXiv. 2020;.

    Google Scholar 

  6. Cohen-Steiner D, Morvan JM. Restricted delaunay triangulations and normal cycle; 2003. p. 312–321.

    Google Scholar 

  7. Inui M, Umezu N, Shimane R. Shrinking sphere: a parallel algorithm for computing the thickness of 3D objects. Comput Aided Des Appl. 2016;13(2):199–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Niemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niemann, A., Schneider, L., Preim, B., Voß, S., Berg, P., Saalfeld, S. (2021). Towards Deep Learning-based Wall Shear Stress Prediction for Intracranial Aneurysms. In: Palm, C., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2021. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33198-6_25

Download citation

Publish with us

Policies and ethics