Skip to main content

Human Axon Radii Estimation at MRI Scale

Deep Learning Combined with Large-scale Light Microscopy

  • Conference paper
  • First Online:
  • 1622 Accesses

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

Non-invasive assessment of axon radii via MRI is of increasing interest in human brain research. Its validation requires representative reference data that covers the spatial extent of an MRI voxel (e.g., 1mm2). Due to its small field of view, the commonly used manually labeled electron microscopy (mlEM) can not representatively capture sparsely occurring, large axons, which are the main contributors to the effective mean axon radius (reff) measured with MRI. To overcome this limitation, we investigated the feasibility of generating representative reference data from large-scale light microscopy (lsLM) using automated segmentation methods including a convolutional neural network (CNN). We determined large, mis-/undetected axons as the main error source for the estimation of reff (\(\approx \) 10 %). Our results suggest that the proposed pipeline can be used to generate reference data for the MRI-visible reff and even bears the potential to map spatial, anatomical variation of reff.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Veraart J, Nunes D, Rudrapatna U, et al. Noninvasive quantification of axon radii using diffusion MRI. elife. 2020;9:e49855.

    Google Scholar 

  2. Schmidt H, Knösche TR. Action potential propagation and synchronisation in myelinated axons. PLoS Comput Biol. 2019;15:e1007004.

    Google Scholar 

  3. Aboitiz F, Scheibel AB, Fisher RS, et al. Fiber composition of the human corpus callosum. Brain Res. 1992;598(1):143–153.

    Google Scholar 

  4. Caminiti R, Ghaziri H, Galuske R, et al. Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates. PNAS USA. 2009;106(46):19551–19556.

    Google Scholar 

  5. Mordhorst L, Morozova M, Papazoglou S, et al.. Towards a representative estimation of the MRI-visible axon-radius distribution using large-scale light microscopy images. ESMRMB; 2020.

    Google Scholar 

  6. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. MICCAI. 2015; p. 234–241.

    Google Scholar 

  7. Paszke A, Gross S, Massa F, et al.. PyTorch: an imperative style, high-performance deep learning library; 2019.

    Google Scholar 

  8. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016; p. 770–778.

    Google Scholar 

  9. Macenko M, Niethammer M, Marron JS, et al. A method for normalizing histology slides for quantitative analysis. ISBI. 2009; p. 1107–1110.

    Google Scholar 

  10. Kingma DP, Ba J. Adam: a method for stochastic optimization; 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurin Mordhorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mordhorst, L. et al. (2021). Human Axon Radii Estimation at MRI Scale. In: Palm, C., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2021. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33198-6_45

Download citation

Publish with us

Policies and ethics