Skip to main content

Acquisition Parameter-conditioned Magnetic Resonance Image-to-image Translation

  • Conference paper
  • First Online:
  • 1626 Accesses

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

A Magnetic Resonance Imaging (MRI) exam typically consists of several sequences that yield different image contrasts. Each sequence is parameterized through a multitude of acquisition parameters that influence image contrast, signal-to-noise ratio, scan time and/or resolution. Depending on the clinical indication, different contrasts are required by the radiologist to make a diagnosis. As the acquisition of MR sequences is time consuming, and acquired images may be corrupted due to motion, a method to synthesize MR images with fine-tuned contrast settings is required. We therefore trained an image-to-image generative adversarial network conditioned on the MR acquisition parameters repetition and echo time. Our approach is able to synthesize missing MR images with adjustable MR image contrast and yields a mean absolute error of 0.05, a peak signal-to-noise ratio of 23.23 dB and structural similarity of 0.78.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Munn Z, Moola S, Lisy K, et al. Claustrophobia in magnetic resonance imaging: a systematic review and meta-analysis. Radiography. 2015 May;21(2):e59–e63.

    Google Scholar 

  2. Andre JB, Bresnahan BW, Mossa-Basha M, et al. Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations. J Am Coll Radiol. 2015 Jul;12(7):689–695.

    Google Scholar 

  3. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In: Adv Neural Inf Process Syst; 2014. p. 2672–2680.

    Google Scholar 

  4. Yu B, Zhou L, Wang L, et al. Ea-GANs: Edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans Med Imaging. 2019 Jul;38(7):1750–1762.

    Google Scholar 

  5. Sharma A, Hamarneh G. Missing MRI pulse sequence synthesis using multi-modal generative adversarial network. IEEE Trans Med Imaging. 2020 Apr;39(4):1170–1183.

    Google Scholar 

  6. Zhou T, Fu H, Chen G, et al. Hi-Net: hybrid-fusion network for multi-modal MR image synthesis. IEEE Trans Med Imaging. 2020 Sep;39(9):2772–2781.

    Google Scholar 

  7. Wang G, Gong E, Banerjee S, et al. Synthesize high-quality multi-contrast magnetic resonance imaging from multi-echo acquisition using multi-task deep generative model. IEEE Trans Med Imaging. 2020 Oct;39(10):3089–3099.

    Google Scholar 

  8. Stimpel B, Syben C, Würfl T, et al. Projection-to-projection translation for hybrid X-ray and magnetic resonance imaging. Sci Rep. 2019 Dec;9(1).

    Google Scholar 

  9. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. MICCAI. 2015; p. 234–241.

    Google Scholar 

  10. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proc IEEE CVPR; 2016. p. 770–778.

    Google Scholar 

  11. Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization. In: Proc IEEE ICCV. IEEE; 2017. p. 1501-1510.

    Google Scholar 

  12. Lucic M, Kurach K, Michalski M, et al. Are GANs created equal? A large-scale study. In: Adv Neural Inf Process Syst. NIPS'18. Red Hook, NY, USA: Curran Associates Inc; 2018. p. 698–707.

    Google Scholar 

  13. Zhu JY, Park T, Isola P, et al. Unpaired image-to-image translation using cycleconsistent adversarial networks. Proc IEEE ICCV. 2017; p. 2223–2232.

    Google Scholar 

  14. Zbontar J, Knoll F, Sriram A, et al. fastMRI: an open dataset and benchmarks for accelerated MRI. arXiv preprint arXiv:181108839. 2018;.

  15. Wang Z, Bovik AC, Sheikh HR, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004 Apr;13(4):600–612.

    Google Scholar 

  16. Cohen JP, Luck M, Honari S. Distribution matching losses can hallucinate features in medical image translation. MICCAI. 2015; p. 234–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Denck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denck, J., Guehring, J., Maier, A., Rothgang, E. (2021). Acquisition Parameter-conditioned Magnetic Resonance Image-to-image Translation. In: Palm, C., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2021. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33198-6_49

Download citation

Publish with us

Policies and ethics