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Abstract. In the event of stroke, a catheter-guided procedure (thrombectomy)
is used to remove blood clots. Feasibility of machine learning based automatic
classifications for thrombus detection on digital substraction angiography (DSA)
sequences has been demonstrated. It was however not used live in the clinic,
yet. We present an open-source tool for automatic thrombus classification and
test it on three selected clinical cases regarding functionality and classification
runtime. With our trained model all large vessel occlusions in the M1 segment
were correctly classified. One small remaining M3 thrombus was not detected.
Runtime was in the range from 1 to 10 seconds depending on the used hardware.
We conclude that our open-source software tool enables clinical staff to classify
DSA sequences in (close to) realtime and can be used for further studies in clinics.

1 Introduction

Worldwide, ischemic stroke, in which a blood clot blocks blood vessels in the brain, is one
of the most common causes of death [1]. In addition to drug treatment (thrombolysis),
removal of the blood clot using a catheter-guided procedure (thrombectomy) has now
become widely accepted and has shown a significantly better outcome for patients [2].
However, there continue to be numerous challenges in performing thrombectomy, re-
sulting in reperfusion of occluded vessels being achieved in only 70-80% of cases, with
treatment remaining unsuccessful in the remaining patients [3].

Thrombectomy is usually performed under fluoroscopic guidance. Here, digital
subtraction angiography (DSA) can be used to visualize the vascular tree in relation to the
instruments. Vascular occlusions frequently occur in the middle cerebral artery (MCA),
specifically in the M1 - M3 segments, with the MCA having a diameter of approximately
3 mm in the M1 segment immediately after the branch from the internal carotid artery,
which then narrows further in the M2 segment and M3 segment. M3 occlusions are
more difficult to detect and treat, but are also often less critical than, for example, M1
occlusions. One challenge for the physician is to quickly identify whether a blood clot is
still present in the DSA sequence just acquired or whether it has already been successfully
removed. Automatic classification of DSA sequences using machine learning methods
has already been demonstrated in studies, for example by Nielsen et al. who used
an EfficientNet-B0-based Convolutional Neural Network (CNN) with Gated Recurrent
Units (GRU) to classify with respect to Thrombolysis In Cerebral Infarction (TICI) and
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achieved an accuracy of 0.95 ± 0.03 [4]. Another work by Su et al. uses a multi-path
CNN for automatic TICI classification with which they achieve an average area under
the curve (AUC) value of 0.81 [5]. In a preliminary work of ours, we demonstrated that
using an EfficientNetV2 architecture with GRU, DSA sequences can be classified into
thrombus-free and non-thrombus-free, achieving an AUC of 0.94 [6].

While the feasibility of automatic classification has been demonstrated by the listed
studies, to the best of our knowledge, the classifications were performed offline using
dedicated computers and could not yet be used live in the clinic. With the work presented
here, based on our preliminary work, we want to go one step further towards clinical
translation: (1) we present an open-source application that can be installed together with
the trained network on arbitrary computers and classify DICOM data there, (2) after
performing a 5-fold cross-validation in the preliminary evaluation work [6], we re-train
the network with all training data in this work, and (3) test the classification on new
datasets acquired in the clinic with a different DSA system. The trained network and the
classification tool are published.

2 Methods

2.1 Open-source application for classification

Focusing on enabling users from medical research in using the classification, we develop
a prototypical graphical user interface. We envision to provide several functionalities,
such as (1) Loading of DICOM and nifti image files, (2) Showing an one-image-preview
of the loaded series, (3) Loading of any model that shall be used for classification,
(4) Selection of the classification threshold based on statistical evaluation on the training
data and displaying these statistics, (5) Classification of the loaded data and (6) Keeping
the requirements of the application in terms of the hardware as low as possible with a
classification result provided in less than 60 seconds.

In order to combine the graphical user interface (GUI) capabilities of the .NET
framework using Windows Presentation Foundation (WPF) and the typical python-
based PyTorch implementation for machine learning, we employ a classic client-server
architecture. The python service can therefore be started as the server, providing an
interface that the user application can query. These endpoints can provide functionality
like model interference (e.g. classifying provided images) or image rendering, to employ
the same image preprocessing as it is used for the model. We use the python package
nibabel (https://nipy.org/nibabel/) to load the nifti-files. In case of DICOM data,
we use the commandline tool plastimatch (https://plastimatch.org/) to convert
them into the nifti file format. In order to comply with the security of patient data and
to keep loading times short, both the python service as well as the user application need
to run on the same machine, sharing the same filesystem.

In order to make the model applicable for non-technical users such as clinical staff,
we provide an interactive view, enabling to choose the threshold (e.g. the value at which
the application labels a sample as positive/negative) and run the classification. Thereby,
one can optimize different metrics (like the Matthews Correlation Coefficient MCC [7])
according to their needs. We initially provide an optimized threshold value of 0.57, which

https://nipy.org/nibabel/
https://plastimatch.org/
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is found by optimizing the rates of false positives and true positives. We therefore adapt
the proposed closest-point-criterion [8], which, when using 𝐹𝑃𝑅 instead of (1 − 𝐹𝑃𝑅)
as abscissa, can be rewritten as

threshold = arg max
𝑡

√︃
(1 − 𝐹𝑃𝑅𝑡 )2 + 𝑇𝑃𝑅2

𝑡 (1)

where 𝐹𝑃𝑅 is the false positive rate and𝑇𝑃𝑅 is the true positive rate, found by evaluating
the correctness of classification results utilizing threshold 𝑡 on the training data.

2.2 Network architecture and model retraining

One network setup that yielded good results in [6] is EfficentNetV2+GRU. We employ
this architecture for classification, as shown in Fig. 1a. We utilize two models, one that
was trained for frontal sequences, and another that was trained for lateral sequences.
The final classification is the mean of both predictions.

In [6], crossfold-validation was used to estimate the quality of the classification,
since the amount of data samples was quite limited. In order to provide maximum
performance of the model, we combined training and test dataset and trained one single
model on all of it. We use the metrics of the crossfold-validation to estimate the models
performance. However, we plan to continually assess the performance of our model with
future data, as discussed in detail in Sec. 4.

2.3 Evaluation methods

The objective was to evaluate the software and the new trained model regarding (1) func-
tionality, (2) classification correctness and (3) runtime on different systems. We were
able to evaluate our system on three new cases that were generated with another angiog-
raphy unit than the training data, namely a Siemens ARTIS icono biplane instead of a
Siemens ARTIS zee biplane. These three cases were selected by physicians, consisting
of two DSA sequences each: One before the treatment was started, inherently containing
one or even multiple thrombi. The other one was taken after the treatment. The first case
shows an M1 thrombus, all thrombi were removed. The second case initially shows an
M1 thrombus which was removed, one small peripheral M3 thrombus was remaining.
The third case shows a thrombus in the carotid terminus, all thrombi were successfully
removed, however, the sequence shows flow reversal in the vessels, which might be
mistaken for an occlusion by inexperienced observers.

We benchmarked several different hardware configurations, solely running on CPU
or utilizing GPU, and both on various budget levels. For testing the CPU performance,
we compare an Intel i7-7700K with 8 threads with an Intel i7-11700KF with 16 threads.
Regarding the GPU, we evaluate a Nvidia GTX 1050Ti Mobile and a Nvidia RTX 3090.
The tests were conducted under Python 3.10.8, PyTorch 1.18, CUDA 11.7.1 and Nvidia
GPU driver 526.98, which were the most recent compatible versions at this time. We
therefore benchmarked the three new cases, resulting in 𝑛 = 6 datapoints, and took the
mean of the timings. Since the classification time might deviate depending on the file
size, we also calculated the standard deviation for these measurements.
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Tab. 1. Details about the tested cases.

Case 1 Case 2 Case 3
Pre Post Pre Post Pre Post

Size in MB (Combined) 283 199 199 210 210 263
Raw Classification Output 0.77 0.24 0.70 0.25 0.79 0.49

3 Results

A screenshot of our developed application is shown in Fig. 1b. In order to support the
concept of Open Science, we provide our application as well as the trained model to the
community by making it open-source (https://osf.io/n8k4r/).

In all three cases, the first and second sequences were correctly classified as non-
thrombus-free and thrombus-free. However, the small remaining M3 thrombus was
not detected, a behavior that we already know from our previous study which needs
discussion (see Sec. 4). In case 3, the raw output (0.49) was close to the threshold of
0.57, but still below, which was due to a misleading flow reversal in the vessels, by which
experienced physicians would not have been irritated. Tab. 1 shows the raw combined
classification result for all three cases along with the respective file size of the frontal
and lateral sequence combined.

The resulting benchmarks can be seen in Tab. 2. The timings were calculated using
six datapoints, namely our three cases that each consisted of preinterventional and
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(a) Architecture of the neural net-
work (adapted from [6]). (b) Screenshot of the application.

Fig. 1. Details of the application.

https://osf.io/n8k4r/
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Tab. 2. Required mean classification time in seconds with standard deviation (n=6).

Highend GPU Basic GPU Highend CPU Basic CPU
Nvidia RTX 3090 Nvidia GTX 1050Ti Intel i7-11700KF Intel i7-7700K
24GB VRAM 4GB VRAM 32GB RAM 16GB RAM
1.1s ± 0.1 1.8s ± 0.1 4.8s ± 0.5 8.8s ± 0.9

postinterventional sequences. We show the approximate time in seconds needed to
classify one case, in order to estimate necessary hardware constraints. Preliminary steps
are not included, but typically add less than 15 seconds for data conversion (if necessary)
and 5 seconds for image loading along with preprocessing.

4 Discussion

Despite the new angiography system, our system was able to classify all sequences
correctly for large vessel occlusions in the M1 segment. In the second case, our system
was unable to detect the remaining small peripheral thrombus. As these kind of thrombi
were not focus of the training process, we already expected this behavior. However
though, as these cases would usually not be treated by thrombectomy, this was not part
of the goals for the system (also see [6]). In the future, we plan to extend the training
data and retrain the model to investigate if M2 and M3 thrombi can also be detected.

We conclude, that for our tool to be used, no highend hardware is needed. If necessary,
the classification can be done on the CPU in still reasonable time, although we see that
the maximum number of threads influences performance. However though, the system
already greatly benefits from entry-level graphic cards. The use of high-end hardware in
return does not yield great advances, when seen in relation to the costs. The classification
time of up to approximately 10 seconds seems acceptable. In addition, the conversion of
the DICOM data along with preprocessing is estimated in the experimental runs to take
at most 30 seconds. Thus, the total duration also seems to be in an acceptable range,
especially since the runtime can certainly still be optimized.

As the values of the various metrics will likely be different on unseen new data,
the use of these values for estimating an optimal threshold should be treated carefully.
We therefore propose to incorporate ways of obtaining user feedback concerning the
correctness of the classification, to store this feedback along with the raw classification
output, and to continually recompute and optimize the threshold using these values.
Furthermore, more test cases are needed. We currently prepare a larger study that
assesses the quality of our model.

We envision a system that provides physicians hints right in the moment of the
thrombectomy with an additional safety. For this, we plan a watch-dog-system that
runs in the background and only warns the physician if it detects remaining thrombi.
Since the current system can only classify whole sequences into thrombus-free and
non-thrombus-free, we are working on visualizing the parts of the sequence that lead
to the classification. This will give clinicians more and deeper insight into the decision,
which in turn will make the system more credible and the process more efficient.
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It’s important to note that this does not, at any time, replace the educated assessment
of the physicians themselves, nor the ones of assisting staff. The goal is to provide an
additional layer of assessment that solely provides a supplementary opinion that, in case
of a warning, might motivate the physician to check for critical sections once more. By,
in the best case, triggering a reassessment from the clinical staff, treatment quality will
be at least the same as without the application.

We faced problems with the specific PACS system in the clinic, an AGFA HealthCare
IMPAX EE R20 XVIII SU1, as it sometimes failed to export DICOM data correctly. We
therefore currently investigate several possibilities for a realtime connection, such as the
connection to the angiography system’s manufacturer’s API as well as the potential use of
framegrabbers. In addition to converting DICOM data on import, the current prototype
also allows nifti files to be imported directly, which are useful for demonstration, research
and fallback purposes.

Whereas the path to a medical product is still long, we are confident that our
application along with the planned study is a step in the right direction. Also, we may
help radiologists test the classification in their clinical environment, even during ongoing
procedures if ethically approved.
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