

Abstract: Deep-learning on Lossily Compressed Pathology Images

Adverse Effects for ImageNet Pre-trained Models

Maximilian Fischer^{1,2}, Peter Neher^{1,2,11}, Michael Götz^{1,3}, Shuhan Xiao^{1,4}, Silvia Dias Almeida^{1,5}, Peter Schüffler⁶, Alexander Muckenhuber⁶, Rickmer Braren⁷, Jens Kleesiek^{8,9}, Marco Nolden^{1,10}, Klaus Maier-Hein^{1,4,5,10,11}

 ¹Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
²German Cancer Consortium (DKTK), partner site Heidelberg
³Clinic of Diagnostics and Interventional Radiology, Ulm University Medical Centre, Ulm, Germany
⁴Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
⁵Medical Faculty, Heidelberg University, Heidelberg, Germany
⁶School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
⁷Department of Diagnostic and Interventional Radiology, TU Munich, Germany
⁸Institute for AI in Medicine (IKIM), University Medicine Essen, Essen, Germany
⁹German Cancer Consortium (DKTK), partner site Essen
¹⁰Department of Radiation Oncology, Heidelberg University Hospital, Germany
¹¹National Center for Tumor Diseases (NCT), Germany

Digital whole slide imaging (WSI) systems allow scanning complete probes at microscopic resolutions, making image compression inevitable to reduce storage costs. While lossy image compression is readily incorporated in proprietary file formats as well as the open DICOM format for WSI, its impact on deep-learning algorithms is largely unknown. We compare the performance of several deep learning classification architectures on different datasets using a wide range and different combinations of compression ratios during training and inference. We use ImageNet pre-trained models, which is commonly applied in computational pathology. With this work, we present a quantitative assessment on the effects of repeated lossy JPEG compression for ImageNet pre-trained models. We show adverse effects for a classification task, when certain quality factors are combined during training and inference. This work was published on the International Workshop on Medical Optical Imaging and Virtual Microscopy Image Analysis [1].

References

 Fischer M, Neher P, Götz M, Xiao S, Almeida SD, Schüffler P et al. Deep-learning on lossily compressed pathology images: adverse effects for ImageNet pre-trained models. Medical Optical Imaging and Virtual Microscopy Image Analysis. Ed. by Huo Y, Millis BA, Zhou Y, Wang X, Harrison AP, Xu Z. Cham: Springer Nature Switzerland, 2022:73–83.

© Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2023 T. M. Deserno et al. (Hrsg.), *Bildverarbeitung für die Medizin 2023*, Informatik aktuell, https://doi.org/10.1007/978-3-658-41657-7_53