Skip to main content
Book cover

COMPSTAT pp 89–100Cite as

Modelling Bacterial Genomes Using Hidden Markov Models

  • Conference paper

Abstract

Long DNA sequences are often heterogeneous in composition. Hidden Markov models are then good statistical tools to identify homogeneous regions of the sequences. We compare different identification algorithms for hidden Markov chains and present some applications to bacterial genomes to illustrate the method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archer, G. & Titterington, D. (1995). Parameter estimation for hidden Markov chains. Technical report, University of Glasgow, Department of Statistics.

    Google Scholar 

  • Baum, L.E. & Petrie, T. (1966). Statistical Inference for Probabilistic Functions of finite State Markov Chains. The Annals of Mathematical Statistics, 37, 1554–1563.

    Article  MathSciNet  MATH  Google Scholar 

  • Baum, L.E., Petrie, T., Soules, G. & Weiss, N. (1970). A Maximization Technique Occuring in the Statistical Analysis of Probabilistic Functions of Markov Chains. The Annals of Mathematical Statistics, 41, 1, 164–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Celeux, G. & Diebolt, J. (1985). The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational Statistics Quarterly, 2, 73–82.

    Google Scholar 

  • Churchill, G.A. (1989). Stochastic Models for Heterogeneous DNA Sequences. Bulletin of Mathematical Biology, 51, 1, 79–94.

    MathSciNet  MATH  Google Scholar 

  • Churchill, G.A. (1992). Hidden Markov chains and the analysis of genome structure. Computers chem., 16, 2, 107–115.

    Article  MATH  Google Scholar 

  • Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. J. Royal Statist. Soc. Ser. B, 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Geman, S. & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattn. Anal. Mach. Intel. 6, 721–741.

    Article  MATH  Google Scholar 

  • Muri, F. (1997). Comparaison d’algorithmes d’identification de chaînes de Markov cachées et application à la détection de régions homogènes dans les séquences d’ADN. PhD thesis, Université René Descartes, Paris V.

    Google Scholar 

  • Qian, W. & Titterington, D.M. (1990). Parameter estimation for hidden Gibbs chains. Statist. Probab. Lett., 10, 49–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabiner, L.R.A (1989). Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEE, 77, 257–286.

    Article  Google Scholar 

  • Redner, R.A. & Walker, H.F. (1984). Mixture Densities, Maximum Likelihood and the EM Algorithm. SIAM Review, 26, 2, 195–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Robert, C.P., Celeux, G. & Diebolt, J. (1993). Bayesian estimation of hidden Markov chains: A stochastic implementation. Statist. Probab. Lett., 16, 77–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Robert, C.P. (1996). Méthodes de Monte Carlo par Chaînes de Markov. Economica.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muri, F. (1998). Modelling Bacterial Genomes Using Hidden Markov Models. In: Payne, R., Green, P. (eds) COMPSTAT. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-01131-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01131-7_8

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1131-5

  • Online ISBN: 978-3-662-01131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics