Refinement of Parallel and Reactive Programs

R. J. R. Back

Computer Science Department
California Institute of Technology

Caltech-CS-TR-92-23

Refinement of Parallel and Reactive Programs

R.J.R. Back

Abstract

We show how to apply the refinement calculus to stepwise refinement of parallel and
reactive programs. We use action systems as our basic program model. Action systems
are sequential programs which can be implemented in a parallel fashion. Hence refinement
calculus methods, originally developed for sequential programs, carry over to the deriva-
tion of parallel programs. Refinement of reactive programs is handled by data refinement
techniques originally developed for the sequential refinement calculus. We exemplify the
approach by a derivation of a mutual exclusion algorithm.

1 Introduction

The action system formalism {7, 8] describes the behavior of parallel and distributed programs
in terms of the actions that can take place in the system. Two or more actions can be executed
in parallel, as long as the actions do not have any variables in common. The actions are atomic:
if an action is chosen for execution, it is executed to completion without any interference from
the other actions in the system.

Atomicity guarantees that a parallel execution of an action system gives the same results as a
sequential and nondeterministic execution. We can therefore treat a parallel action system as if
it was a sequential program statement. This allows us to use the sequential refinement calculus
introduced in [2] for stepwise refinement of parallel systems.

The refinement calculus is based on the assumption that the notion of correctness we want to
preserve is total correctness. This is appropriate for parallel algorithms, i.e., programs that differ
from sequential algorithms only in that they are executed in parallel, by co-operation of many
processes. They are intended to terminate, and only the final results are of interest. Parallelism
is introduced by superposition of action systems and refining the atomicity of actions. This
approach to stepwise refinement of parallel algorithms has been put forward by Back and Sere
[4, 10, 12].

In this paper we will show how the stepwise refinement method for action systems can be
extended to stepwise refinement of reactive systems. Our starting point is the approach to
refining reactive programs by refinement mappings put forward by Lamport in [27] and further
developed by Abadi and Lamport [1], Stark [36], Jonsson {24, 25|, Lynch and Tuttle [29] and
Lam and Shankar [26]. We will show that refinement of reactive systems can be seen as a special
case of the general method for data refinement |20, 23, 19]. Data refinement in the framework of
refinement calculus is considered in [2, 33, 3, 34, 17, 13, 18]. The work described here is based
on earlier work presented in [5].

The action system framework is described in Section 2. In Section 3 we consider parallel
execution of action systems. In Section 4 we describe the basic operations for composing re-
active action systems, parallel composition and hiding. Section 5 describes the method of data
refinement for preserving total correctness, as applied to action systems. In Section 6 we consider
refinement of reactive systems, where the behavior of an action system needs to be preserved in

a reactive context. Section 7 contains a case study of refinement of reactive systems. We show

how to refine the atomicity of an action system by implementing a protocol that enforces mutual
exclusion of the critical sections in the actions. We end with some concluding remarks in Section
8.

2 Action system

An action system is a statement of the form
A = beginvar z:=1;do A; | ... | A,odend: 2. (1)

Here z are the local variables of A, initialized to zy, z are the global variables of Aand Ay,..., Ap
are the actions (or guarded commands) of A. Each action is of the form

Ai=gi— 8,

where g; is the guard of the action and S; is the statement (or body) of the action. We denote
the guard of action A by gA and the statement of it by sA, so A = g4 — sA.

The local and global variables are assumed to be distinct, i.e., zNz = @. The local and global
variables together form the state variables y , y = x U 2. The set of state variables accessed in
action A is denoted vA.

An action system provides a global description of the system behavior. The state variables
determine the state space of the system. The actions determine what can happen during an
execution. The execution terminates when no action is enabled anymore. The initialization
could be made more ellaborate, either permitting an arbitrary initialization statement, or then
an assignment of values to the local values that nondeterministically establishes some condition,
but the form chosen here has the advantage of simplicity.

We assume that the body of each action A is strict, i.e., sA(false) = false, and positively
conjunctive, i.e., sSA(\; @) = A, sA(Q;) for any nonempty set {Q;} of predicates. The first
assumption can be done without loss of generality. If sA is not strict, then we can write A in
the equivalent form ¢’ — §’, where ¢’ = gA A ~sA(false) and S’ = {-sA(false)}; sA, where
S’ is strict. The second assumption is a real restriction on the language of action systems.

The action system formalism is quite general: The body of an action may be an arbitrary,
possibly nondeterministic statement and it may be nonterminating. The action system itself
may or may not terminate.

Example Figure 1 shows an example of a simple sorting program (exchange sort) described
as an action system. This program will sort the values of z.1,...,z.n in nondecreasing order.
The n — 1 sorting actions exchange neighboring values if they are out of order. The program
terminates when all values are in nondecreasing order. All variables are global in this simple
example. Figure 2 shows the access relation of the system, i.e., the way in which the actions
access the state variables.

3 Parallel execution of action systems

Action systems may also be executed in parallel. If two actions A; and A; that have no state
variables in common are both enabled, they may be executed in either order or at the same time.
Such a parallel execution cannot produce any result that could not be produced by a sequential
execution.

A: begin
do
(] zi>z.(i4+1) > zd,z.(i+ 1) :=z.(¢ + 1),z.i [EX.{]
fori:1l,...,n—1)
od
end: z.1,...,z.n € integer.

Figure 1: Exchange sorting

AVANRVANA

x(i+1). . x.(n-1) x.n
Figure 2: Access relation for exchange sorting

Distributed systems Consider again the action system A in (1). Let

P= {ph""p"}

be a partitioning of the state variables y of A into disjoint sets. We refer to each p; as a process.
Intuitively, we identify a process with the set of state variables local to the process. We refer to
the pair (A, P) as a partitioned action system.

The action A is said to involve process p if vANp # O, i.e., if A accesses some variable in p.
Let pA be the set of processes involved in A, pA = {p € PlvANp # 0}.

An action A that involves only one process p is said to be private to p. If A involves two
or more processes, it is said to be shared between these. Two actions A; and A; are said to be
independent, if pA; N pA; = 0. The actions are competing if they are not independent.

A shared action corresponds to a generalized handshake, executed jointly by all the processes
involved in it. The processes must be synchronized for execution of such an action. Shared actions
also provide communication between processes: a variable in one process may be updated in a
way that depends on variables in other processes involved in the shared action. This model
generalizes conventional synchronous message passing models for distributed systems such as
CSP[21].

A parallel execution of a partitioned action system is any execution where only independent
actions are executed in parallel. Independent actions do not have any processes in common,
so they cannot have any state variables in common either. Different partitionings of the state
variables will induce different parallel executions for the same action system.

As an example, consider the example program above, with the variables partitioned into the
sets {z.1,z.2}, {z.3},{z.4},...,{z.(n — 2)}, {z.(n — 1), z.n} (Figure 3). Then the action Ez.1
is private to the first process and action Ez.(n — 1) is private to the last process. All other
actions are shared between two neighboring processes and require a synchronizing handshake for
execution.

Exi . .. Ex.(n-1)

Ex.1 Ex.2 R

x.{(n-1) X.n
Figure 3: Distributed sorting
Ex.1 Ex.2 RN E.(i-1) Exi Ex.(n-1)
x.1 x.2 x3 . .. x.(i-1) X.i x.(i+1). . x(n-1) x.n

Figure 4: Shared variable sorting

Shared variable model By partitioning the actions rather than the variables, we get a con-
current system with shared variables. Let

P= {Pl,---,Pr},

where each p; is a set of actions. A variable will be shared in the partitioned action system
(A, P), if it is accessed by two or more actions, otherwise it is private. Shared variables may
only be accessed under mutual exclusion and the actions must be executed atomically.

As an example, we partition the actions in the sorting program into two processes, one
containing the actions Fy,..., E;—1 and the other containing actions E;,..., E,_;. The first
process sorts the low end of the array, and the second sorts the high end. They use a shared
variable z.: to exhange values between the low and high end.

Implementing action systems Partitioning is thus sufficient to describe different kinds of
parallel execution models. The way in which these models are implemented may of course be very
different depending on the view taken. A distributed implementation requires that synchronizing
multiprocess handshakes are implemented, while a shared variable implementation requires a
protocol that guarantees mutual exclusion for shared variables and atomicity of actions.
Distributed implementations of action systems are described by Back and Kurki-Suonio {7]
for two-process actions in CSP with output guards. Efficient implementations of so-called decen-
tralized action systems on broadcasting networks are presented in [8]. Implementations of action
systems on point-to-point networks are described by Bagrodia [14]. Implementation of action
systems in occam (which does not permit output guards) is described by Back and Sere in [11].

4 Composing action systems

We will take the shared variable partitioning model as the basis for structuring action systems
into a hierarchy of interacting systems.

Parallel composition Given two action systems A and B,
A = beginvar z:=z0;do 4, | ... [Amodend: 2
B = beginvar y:=y0;do By | ... | Byodend: u,
we define their parallel composition A || B: zU u to be
beginvar z,y:=1z0,90;do A; | ... | Am | B1| ... | Bxodend: zUu

This is the same as the union operator in UNITY [16], except that we also keep track of which
variables are local and which are global (UNITY has only global variables). We assume that
zNy = @ (this can always be achieved by renaming local variable). While the local variables are
kept distinct, the global variables are shared among the processes in the parallel composition.

Renaming We may rename the global variables of an action systems. If A4 is an action system
on global variables z, then A[z'/z] is the action system on the global variables 2’ (a list of distinct
variables) which we get by replacing in A each occurrence of a variable in z by the corresponding
variable in 2/, renaming local variables if necessary to avoid capture of global variables.

Hiding Given an action system A : z of the form above, we can hide some of its variables by
making them local. If z = u, v, then the hiding of variables » with initialization 4y produces the
action system beginvar u:= u0; Aend: v, defined as

beginvar z,u:=z0,u0;do A; | ... | Amodend: v.

Hiding the variables u makes them inaccessible to actions outside A’ in a parallel composition.

Decomposing action systems Given an action system
C =beginvar v:=v0;do C; | ... | C,odend: z,

we can decompose it into smaller action systems by parallel composition and hiding. Let AS =
{A1,..., A} and BS = {By,..., Bx} be a partitioning of the actions in C. Let

r = vAS —vBS ~z

y = vBS —vAS -2

w = vASNuBS -2

We can then write C as

C =beginvar w:= w0; A| Bend: z,
where

A = beginvar z:=z0; do ASodend:z,w

B = beginvar y:=y0; do BSodend: z,w

The main advantage of using blocks with local variables is that it permits us to clearly state
which variables are used by which actions. The difference, as compared to the process algebra
framework ([31, 22]) is that communication is by shared variables rather than by shared actions.
Hence, hiding really means hiding variables, to prevent access to them, rather than hiding actions.

5 Refinement of action systems

Our purpose here is to show how the method of data refinement in the refinement calculus can be
applied to the refinement of action systems. We will use data refinement in a form that permits
stuttering actions to be introduced in a refinement and which also takes into account the context
in which the action system occurs.

Notation The alternative action A, | ... | Am is an action itself,

At 1 Am=V gAioif Al ... | Am £i

©og=1

We write gA =/, gA; and sA = if A, | ... | A, fi. This permits us to consider the whole
action system A as consisting of a single action A4, i.e., A = beginvar z; Sy;do Aodend: z.
We have that vA = |J; vA..

Data refinement Let A be a statement on the program variables z,z and A’ a statement
on the program variables z’, 2. Let R(z,z’, z) be a relation on these variables (the abstraction
relation). Then A is data refined by A using R, denoted A <p A', if

(Vg. RANAq= A" (Az. RN q)).

(where (3z. R A g) is understood to be a predicate on the program variables z’, z.) When A and
A’ are actions, then this is equivalent to the following two conditions:

(i) Refinement of guards: R A gA’ = gA and
(ii) Refinement of bodies: (Vq.RA gA' A sAq= sA' q).
A refinement may thus strengthen the guard of an action, decrease nondeterminism and increase
termination of the body.
Data refinement of action systems The rule for data refinement of action systems is as
follows: Let
A = beginvar z:=1;do Aodend: 2
A" = beginvar z':=zj;do A'odend: 2.
Then A < A’ if there exists a relation R(z,z’, z) such that
(i) Initialization: R(x, zg, 2),
(ii) Main action: A <p A’ and
(iii) Exit conditions: R A gA = gA'.

The first condition requires that the abstraction relation is established by the initialization
(for any initial value of z). The second condition requires that the action A’ is data refined by
the action A using R. The third condition requires that the continuation condition for A implies
the continuation condition for A’ whenever R holds (or, alternatively, that the exit condition of
A’ implies the exit condition of A).

Permitting stuttering This relation of data refinement is, however, often too restrictive. The
problem is that it requires a one to one correspondence between the actions executed by A and
by A’. In practice, executing a simple action in A will often correspond to executing a sequence
of two or more actions in A’, so that the one to one correspondence is not maintained.

We overcome this problem by permitting stuttering actions in A’, actions which do not
correspond to any global state change in .A. For any execution of an action system .4, the meaning
of A is unchanged if we permit a finite number of skip actions (stutterings) to be inserted in the
execution. We may not, however, add an infinite sequence of successive stutterings, because this
would give rise to internal divergence, even when the original action system was guaranteed to
terminate.

The rule for data refinement of action systems with stuttering is as follows. Let

A = beginvar z:=1m;do Aodend:z
A" = beginvar z':=15;do A'] H' odend: 2.
Here H' is a stuttering action. Then A < A’ if there exists a relation R(z, z’,2) such that
(i) Indtialization: R(xg, 14, 2),
(ii) Main action: A <p A/,
(iii) Erit conditions: R A gA = gA’ Vv gH’,
(iv) Auziliary actions: skip <p H' and
(v) Internal convergence: R[do H’od|true.
We write A <p A’ when the conditions (i) —(v) hold.

The continuation condition is changed to reflect the fact that if the original action is enabled,
then either the main action or the stuttering action in the refinement should be enabled. The
fourth condition requires that the auxiliary actions are stuttering statements, in the sense that
they act as skip statements on the global variables z. The last condition requires that the stutter-
ing actions, when left to themselves, must necessarily terminate, to prevent internal divergence

unless it is already present in the original action system. The correctness of this proof rule is
established in [6, 38].

Data refinement in context When the action system A occurs in a parallel composition
with other action systems, then the requirements above are not sufficient. They are based on
the assumption that the action system is executed in isolation, as a closed system. To take the
context into account, we have to add one more condition on the data refinement.

Let A and A’ be as before, and let B be another action system,

B = beginvar y:=y;do Bodend: z

Then A||B < A’||B if there exists a relation R(z,z’, z) such that A <p A’ and, in addition,
(vi) Non-interference: R A Btrue = B R,

This condition guarantees that the interleaved execution of actions from B preserves the abstrac-
tion relation R. This requirement is analogous to the non-interference condition introduced in
the Owicki-Gries proof theory for parallel programs [35].

Superposition Superposition refinement |7, 16, 12] of parallel systems is a special case of this
more general notion of data refinement. In superposition, one may add new variables, but no
old variables can be removed. The abstraction relation then degenerates to a invariant on the
concrete variables.

6 Trace refinement

Traces of action systems Consider the (initialized) action system A, defined as
%z := %; beginvar z:=13;do Aodend:z

A computation of the action system .A is either a finite sequence

(20, 20), (71, 21), - -, (Tny 2n)

where (z,, z,) satisfies the exit condition (a successful computation), a finite sequence

(101 ZO)) (Ila 21), ey (.’En, Zn), J-)

where L indicates that abortion occurred in state (z,, 2,) (a failed computation), or an infinite
sequence

(IO, ZO)1 ($l7 21), (32, 2'/2), e

(an infinite computation), where no abortion occurs and the exit condition is not satisfied in any
state.

A computation ¢ determines a trace of the action system. This is the sequence of (global) 2
values that we get by removing the hidden component z and also removing all finite sequences of
repeated z values (finite stuttering), but leaving L if it is present, as well as any infinite trailing
sequence of stuttering values. Let us denote by tr(.A) the set of all traces of action system .A.
We say that an action system is rebust, if it cannot produce a failed trace.

Trace specifications A trace specification of an action system is a set T of sequences of z
values, (without trailing 1 element). We say that the action system A satisfies the specification
Tiftr(A)C T.

A specification @ does not contain any failed traces, so an action system that has a failed trace
will not satisfy any specification. Thus, only robust systems are accepted as implementations of
a specification.

Trace refinement We say that the (initialized) action system A is trace refined by the (ini-
tialized) action system A’, denoted A C A', if

(VT.tr(A)C T = tr(A) C T).
This is equivalent to the following condition:
A robust = tr(A) D tr(A').

Thus robustness is preserved in a refinement, while the set of different traces of an action system
may decrease. An initialized action system must always have at least one trace, so refinement
cannot result in an empty set of traces.

Proving trace refinement Data refinement guarantees refinement of action systems, in the
sense of preserving total correctness. In fact, data refinement is even stronger than this, because
it will also preserve trace correctness. More precisely, if A <z A’, then A C A’. This extends also
to data refinement in context: the same conditions that guarantee that an action system refines
another in a parallel context, are sufficient to guarantee that trace correctness is preserved.

Data refinement as described here is in fact forward data refinement (or downward simulation.
A dual method is backward data refinement or (upward simulation) [15]. Under certain assump-
tions, these two methods together provide a complete method for trace refinement [25, 32, 37]

We may use data refinement for stepwise refinement of action systems both when we want to
preserve total correctness, and when we want to preserve trace correctness. If we only need to
preserve total correctness, then we may use other refinement steps besides data refinement, but
if we have to preserve trace correctness, then we are restricted to data refinement.

7 Case study: Mutual exclusion

Initial system We apply the above techniques to show how to refine the atomicity of a system
with the help of a classical mutual exclusion algorithm (Peterson’s algorithm).
Let us consider the following action system:

MSy: begin(var y.i € Int, cr.i € Bool fori=0,1);
(er.i .= false fori=0,1);

do
(] erii—yi=w+i+1;w:=y.i; er.i:= false fori=0,1) [CS.i
(] merii— N.ifori=0,1) [NS.4]
od

end: z,w € Int.

Besides w, there may be some other globally observable variables z, which are not specificed
further. The action N.i may or may not set cr.i to true, and does not affect cr.j, j # i. The
effect is that NS.i may execute any number of times before the corresponding CS.i action is
executed, and may also execute forever or terminate before the CS.i action is executed.

Our task is to derive an implementation that preserves the trace correctness of the original
solution, but updates w in two separate actions, one where 4.7 := w + i + 1 and the other where
w = y.t.. We assume that the action NS.i does not access w,y.0,y.1, for : = 0,1.

We will assume that the system MS; is closed, i.e., it is not executed in parallel with any
other action system.

Problem with non-atomic update If the updates of w.¢ are not performed atomically, then
the sequence of updates

y0=w+Liyl=w+2;w:=9lw:=y90

can take place. In an initial state w = 0, this would then give the sequence of w-values 0,2,1,....
Thus, we could observe a decrease in the w-value, which is not possible to observe in the original
action system. To avoid this phenomenon, we need to treat y.z:=w+ i+ 1; w:=y.4,2=0,1,
as critical sections that should be executed under mutual exclusion.

Identifying components We will start by partitioning the system into reactive (parallel)
components.

MSy: bvegin(var cr.i € Bool fori =0,1);
(er.i := false fori =0,1);
CSo||NSo

end : z, w.
Here we define

CSy: begin(var y.i € Int for: =0,1);

do
(| eri—yi:=w+i+1;w:=y.i; cr.i:= false fori=0,1) [CS.4]
od :
end : (cr.i fori=0,1), w.

and

NSp : begin

do
(] —er.i— N.ifori=0,1); |[NS.{]
od

end: (cr.i fori=0,1),2.

Refining the critical section We refine the critical section part of the system. We add new
variables and actions, in preparation for refining the atomicity of the system. This step is an
example of a pure superposition step: no variables are reimplemented, only new variables are
added. The auxiliary actions are BS.i, TS.i and BR.i, i =0, 1.

CS;: begin(var b.i € Bool,pc.i,y.i € Int fori=0,1);¢:0...1;
(b.2, pe.i := false,0 fori=0,1);

(t:=0At:=1)

do

(| eriiApei=0-— b.i:=true; pci:=1fori=0,1) [BS.{]
(| pei=1—-t:=1¢;pei:=2fori=0,1) [TS.7)

(] pei=2A(=b(1—-3)Vi=1—-d)—>yi=w+i+ L w:=ys [CS.4]
cr.i .= false; pc.i := 3 fori =0,1)

(] pe.i =8> pec.i:=0; b.i := false fori=0,1) [BR.4]

od

end : (er.i fori=0,1),w.

Correctness of refinement step We need to show that this refinement step is correct. The
abstraction relation will be just an invariant on the new variables, because no variables in the
old version are being replaced. The invariant R is described by the following table:

pei bi erd ot
0 F F,T 0,1
1 T T 01
2 T T 0,1
3 T F,T 0,1

We check that the conditions for data refinement in context are satisfied.

(i) [Initialization: R(x,), z)] The initialization obviously establishes the invariant.

10

(ii) [Main action: A <gp A’} The action CS’.i is a data refinement of the original action: By

the invariant, the guard of the new action implies the guard of the old. The effect is the
same as that of the old action on global variables, and the invariant is preserved.

(iii) [Exit conditions: R A gA = gA’'V gH'] Assume that ¢r.0 is true. Then, if pc.0 = 0, we
are done, as action BS.0 is enabled. Otherwise, if pc.0 = 1, action T'S.0 is enabled and if
pc.0 = 3, then action BR.O is enabled. Assume that pc.0 = 2. If -b.1 V ¢ = 1 holds, then
CS’.0 is enabled. Assume therefore that 5.1 A ¢ = 0 holds. By the invariant, this means
that pe.1 # 0. If pc.1 = 1, then TS.1 is enabled and if pc.1 = 3, then BR.1 is enabled.
Assume pe.1 = 2. Then t = 0, so action CS’.1 is enabled. The analogous argument can be
made for the case when cr.1 is true. Hence, we have proved the exit condition requirement.

(iv) [Auziliary actions: skip <r H'| The action BS.i refines a skip-statement, because only new
variables are affected. It preserves the invariant. Action 7'S.7 also refines a skip statement,
and preserves the invariant, and the same holds for action BR : i.

(v) [Internal convergence: R[do H'od]true| Executing only auxiliary actions will eventually
terminate in a state where pc.0 and pe.1 each is either set to 2 or 3.

(vi) [Non-interference: R A B true = B R] The invariant refers to the global variable ¢r.7, so
we need to show that it is preserved by the environment actions. The action NS.i can only
be enabled when pc.z = 0 or pc.z = 3, in which case the invariant is preserved trivially, as
pe.i, b.i,t are local to CS.7 and therefore not changed by NS.i.

Thus, we have shown that CS; is a data refinement of CSy, in the context of NSy. Hence,

trace correctness is preserved if we replace CSp by CS; in MSp.

Refining the atomicity Next, we refine the atomicity of the system. We split up the action
CS’.i into three actions, CAS.i, CBS.i and CCS.i.

CSy: begin(var b.i € Bool,pc.i,y.i € Int fori=0,1);¢t:0...1;
(b.2, pc.i := false,0 fori = 0,1);

(t:=0At:=1)

do

(| eriApei=0— bi:=true; pci:=1fori=0,1) [BS.4]
(]| peci=1—-t:=1¢pei:=2fori=0,1) [TS.4]
(| peci=2A(=b.(1-4)Vt=1—4i) > pci:=3fori=0,1) [CAS.i
(] pei=3—>yi=w+i+1;pci:=4fori=0,1) [CBS.1]
(] pc.i=4—> w:=y.i; cr.i == false; pc.i ;=5 fori =0,1) [CCS.4]
(] pe.i=5—> pe.i:=0;b.i:= false fori=0,1) [BR.{]
od

end : (cr.i for7=0,1), w.

Abstraction relation for refinement step We need to show that this refinement is correct
also. We have changed the program counter pe.z in CS) to another program counter pc’.i in CSs
(which will have the same name, but is distinguished below from the original by a dash).

11

We have the following relation between pc.i and pc’.i, P.z:

pc.i pc.i
0 0
1 1
2 2
2 3
2 4
3 5

The other variables are unchanged in the abstraction. The following is an invariant /.: of the
resulting action system, for ¢ =0, 1:

pci=1Vpc.i=2= b1
A pdi=3=biAN(-bjVi=jVpdj=1)
AN pdi=4Vpci=5=biA(=bjVi=jVplj=1Ayi=w+i+1

Preservation of invariant We need to show that each action preserves the invariant I.0A I.1.
Consider first the conjunct 1.0. The environment actions cannot change this, because the only
global variable in it, w, is not changed by the noncritical section action. Action CAS.0 will
establish the invariant, and action CBS.0 will preserve it. Also, the actions BS.0, T'S.0 and
BR.0 obviously preserve [.0. For the actions of process 1, we have that BS.1 will set pc’.1 =1
and therefore preserves the invariant, even if b.1 is set to true. Action TS.1 sets t = 1, and
therefore preserves the invariant, even if pc’.1 is set to 2. Action BR.i will set b.1 to false, thus
establishing the disjunction in 7.0, if necessary.

This leaves the actions CAS.1, CBS.1 and CCS.1. We want to show that they can only
be enabled when p¢’.0 # 3,4,5 (the mutual exclusion property), so they cannot invalidate 7.0
either. This is checked by an analysis of the enabling conditions and the invariant. Assume that
CAS.1, CBS.1 or CCS.1 is enabled. Then, we have that

b1IA(=bOVE=0)
must hold, by the invariant. However, by the assumption and the invariant, also
bOA(=blVi=1)

must hold. But the conjunction of these two conditions is equivalent to false. Hence, actions
CAS.1, CBS.1 and CCS.1 are only enabled when pc¢’.1 == 0,1, in which case they preserve the
condition I.0.

An analogous argument shows that each action establishes 1.1, if initially 7.0 A 1.1 holds, so
the invariant is preserved by each action.

Correctness of refinement step We show that the conditions for data refinement in context
are satisfied. The abstraction relation Ris PO AP.1AIOA L1,

(i) [Inétialization: R(xzo, 3, z)] The initialization obviously establishes the abstraction relation
and the invariant.

(ii) [Main action: A <p A’] The main actions are BS,i, TS.i, BR.i and CCS.i, for ¢ = 0, 1.
The effect of these actions on the global variables is the same as the effect of the original
actions, whenever the invariant and the relation between program counters holds. For
CCS.1, this depends on the fact that y.2 = w + 7 + 1 holds prior to execution. The fact
that all actions preserve the invariant was shown above.

12

(iii) [Erit conditions: RAgA = gA'vV gH'] It is sufficient to show that if pc.i = 2A(=b.jVt = j),
then one of the actions CAS.i, CBS.i, CCS.i is enabled. We have by the abstraction that
either pc’.i = 2,3,4. If pc’.i = 2, then the first action is enabled. Otherwise, one of the
other is enabled.

(iv) [Auziliary actions: skip <p H'] The actions CAS.i, CBS .i refine skip actions. This follows
from the fact that they do not change any of the global variables of CS;. The fact that
they preserve the invariant was already shown.

(v) [Internal convergence: R|[do H'od]true|] Executing auxiliary actions alone, for i = 0, 1, will
obviously terminate.

(vi) [Non-interference: R A B true = B R] The invariant and the relation between program
counters only refers to local variables, except for w, which, by assumption, NS.i does not
access.

Restructuring the action systems We will now recombine the critical section with the
noncritical section, giving a refinement of the original closed system MS,. The previous steps
show that

MS, : bvegin(var cr.i € Bool fori =0,1);
(er.i == false fori =0,1);
CS5|| NSo

end : z, w.

is a correct refinement of the system MSg.
Expanding this gives us the action system

MS, : begin(var cr.i € Bool fori=0,1);
(b.i € Bool,pc.i,y.i € Int fori=0,1);¢:0...1;
(er.i := false fori =0,1);
(b.7, pc.i == false,0 fori =0,1);
(

t:=0At:=1)

do

(| eriApei=0= b.i:=true; pci:=1fori=0,1) [BS 4]
(] pei=1—>t:=14;pei:=2fori=0,1) [TS.7]
(] pei=2A(=b(1-d)Vt=1-1i)—> pci:=3 fori=0,1) [CAS.i]
(| pci=3 > yi=w+i+1;pci:=4fori=0,1) [CBS.4]
(| pc.i=4—- w:=y.i; cr.i := false; pc.i :=5 fori =0, 1) [CCS 4]
(| pc.i=5— pei:=0; b.i:= false fori =0,1) (BR.i
(] nerii > N fore=0,1) [NS.4]
od

end : z, w.

ki

Regrouping We partition the action system anew, but now into processes P.i for i = 0,1:

MS3 : begin(var b.i € Bool fori=0,1);¢:0...1;
(b.7 := false fori =0,1);

(t:=0At:=1)
PS0||PS.1
end: z, w.

13

Here the processes PS.i, ¢ = 0,1, are defined as follows:

PS;: beginvar cr.i € Bool,pc.i, y.i € Int;
cr.i ;= false; pc.i := 0;

do .

| eriiApei=0— b.i:=true;pci:=1 [BS.4]
| peci=1—>t:=4¢ pci:=2 [TS.%]
| pei=2A(=b.(1-d)Vi=1—-4)—> pci:=3 [CAS.{|
| pei=3—-yi:=w+i+1;pci:=4 [CBS.i]
| pc.i=4—> w:=y.i; cr.i ;= false; pc.i =5 [CCs i)
| pe.i=5— pec.i:=0;b.i:= false |BR.i]
| —erii— N [NS.3]
od

end : w, b.0,b.1,¢, 2.

Simplifying processes The processes PS.i, ¢ = 0,1, may be simplified, by having just one
program counter, removing cr.z. This is a pure data refinement, involving no globally visible
variables:

PS]: beginvar pc.i,y.i € Int;

pc.t = 5;

do
| pc.i=0— b.i:= true; pc.i:=1 [BS.4]
| peci=1—>t:=4pci:=2 [TS.4]
| pei=2A(=b.(1-2)Vi=1—1%)— pci:=3 [CAS.{]
| peci=3—>yi:=w+i+1;pcii=4 [CBS.q]
| pei=4—> w:=yi;pci:=5 [CCS.4]
| pe.i =5 pe.i:=6; b.i := false [BR.3]
| pci=6—N': [NS.4]

od

end: w, b.0,b.1,¢, 2.

Here N'.i is statement N.z, but with each assignment cr.i := false replaced with pc.i ;= 0. The
data abstraction relation is the following:

pct erid pci
0 F 6
0 T 0
1 T,F 1
2 T,F 2
3 1T,F 3
4 T, F 4
5 T,F 5

-

This implementation will shrink the number of execution paths, by preventing the non-critical
section to start before the critical section is completely finished, i.e. , also b.z has been set to
false. This avoids that the competing process has to wait for the other process to finish its
non-critical section, thus speeding up things.

14

The result is the refined mutual exclusion algorithm

MSs : begin(var b.i € Bool for¢=20,1);t:0...1;
b.i := false, 1 =0,1;
(t:==0At:=1)
PS’.0||PS’.1

end: 2z, w.

Sequential notation Finally, we may omit the program counters alltogether, keeping them
implicit, and instead explicitly indicate the atomicity of statements. This gives us the final form
of our program.

MS5: begin(var b.i € Bool fori=20,1);¢:0...1;
b.i := false fori = 0,1);
(t:==0At:=1)
PS” 0||PS" 1

end : z, w,
where processes PS”.i are defined by

PS!’: begin
do
(N'.3); (b.i := true); (t :=3); (-b.(1 —2)ViE=1— 17— skip);
(yi:=w+1i+1); (w:= y.7); (b.7 := false)
od
end : w, b.0,b.1, ¢, 2.

Final comments The final program satisfies the original requirements, in that we have MSy C
MSs, by transitivity. The difference is that whereas the original program executed the updating
of the w variable in a single atomic step, the final algorithm does the same update non-atomically.
In fact, all accesses to shared variables between the processes PS”.0 and PS”.1 are done with a
single reference to the shared variable. (The guard in the statement (—b.(1—Z)Vt =137 — skip)
does have two reference to shared variables, but in the action system framework, this action can
be replaced by two actions with the same body but with each of the disjunct as guard.) This
means that assuming mutual exclusion for a single read or write access to a variable is sufficient
to guarantee atomicity of the actions in the action system.

The final solution implements Peterson’s mutual exclusion algorithm, in order to permit the
atomicity refinement. To prove the correctness of the refinement step, it was necessary to show
mutual exclusion of the critical sections. Also, the refinement steps required us to show that no
deadlock could occur (this is a consequence of the exit condition).

8 Concluding remarks

Refinement of reactive systems seems to be just a special case of data refinement, with two
additional ingredients. First, it is not possible to refine the atomicity of a statement in such
a way that two global variables previously updated in a single action will be updated in two
separate actions. This would make visible a state that was previously hidden (the state where
one of the globals has been updated and the other has not). Hence, the initial specification of
an action system should not contain such a joint update if one wants to separate these updates
in an implementation of the system.

15

The second difference has to do with fairness requirements. It seems sufficient to assume weak
action fairness, because when modelling the action system as processes, this will correspond to a
minimal progress property. This is different from purely sequential programs, where one does not
require weak fairness of processes. Note that this only holds for reactive systems where processes
. are actually interpreted as parallel processes, or where the underlying scheduling mechanism,
although sequential, is still assumed to be fair. We have ignored the issues of fairness in this
context, but these are treated in, e.g., [1] and, in the context of refining action systems, in [5, 9].

Appart from these differences, the refinement of reactive systems does not introduce anything
which is not already needed when arguing about refinement of ordinary sequential programs.
The correctness notion to be preserved, trace inclusion, is stronger than what one preserves in
usual total correctness refinement. However, by only using data refinement in derivations, this
correctness notion will be preserved.

The correctness of the initial action system, i.e., that it satisfies some given trace specification,
may be proved in almost any suitable logic, such as temporal logic[30], UNITY [16], TLA [28],
as well as other possible logics where one can express properties of sets of (possibly infinite)
state sequences. An other alternative is to consider the initial action system itself to be the
specification, as is done in, e.g., process algebra frameworks [31, 22], and as we did in the case
study.

Acknowledgements

The work reported here was supported by the FINSOFT III program sponsored by the Tech-
nology Development Centre of Finland. I would like to thank Robert Barta, Ulla Binau, Bengt
Jonsson, Marcel van de Groot, Peter Hofstee, Reino Kurki-Suonio, Rustan Leino, Leslie Lamport,
Alan Martin, Carroll Morgan, Amir Pnueli, Kaisa Sere, Jan van de Snepscheut and Joakim von
Wright for very helpful discussions on the topics treated here. Frank Stomp deserves a special
thank, for his insistence on including environment invariants in the model.

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings. In Proc. 3rd IEEE Symp.
on LICS, Edinburgh, 1988.

[2] R.J. R. Back. Correctness Preserving Program Refinements: Proof Theory and Applications,
volume 131 of Mathematical Center Tracts. Mathematical Centre, Amsterdam, 1980.

[3] R. J. R. Back. Changing data representation in the refinement calculus. In 21st Hawas
International Conference on System Sciences. IEEE, January 1989.

[4] R. J. R. Back. Refining atomicity in parallel algorithms. In PARLE 89 Parallel Architectures
and Languages Europe, volume 366 of Lecture Notes in Computer Science, Eindhoven, the
Netherlands, June 1989. Springer Verlag.

[5] R. J. R. Back. Refinement calculus II: Parallel and reactive programs. In J. W. deBakker,
W. P. deRoever, and-G. Rozenberg, editors, Stepwise Refinement of Distributed Systems,
volume 430 of Lecture Notes in Computer Science, pages 67-93. Springer—Verlag, 1990.

[6] R. J. R. Back. Refinement calculus, lattices and higher order logic. Technical report,
Marktoberdorf Summer School on Programming Logics, 1992.

16

[7]

8]
[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

22]
[23]

R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized control.

In 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, pages 131-
142. ACM, 1983.

R. J. R. Back and R. Kurki-Suonio. Distributed co-operation with action systems. ACM
Transactions on Programming Languages and Systems, 10:513-554, October 1988.

R. J. R. Back and R. Kurki-Suonio. Superposition and fairness in reactive system refinement.
In Jerusalem conference on Information Technology, Jerusalem, Israel, October 1990.

R. J. R. Back and K. Sere. Refinement of action systems. In Mathematics of Program Con-
struction, volume 375 of Lecture Notes in Computer Science, Groningen, The Netherlands,
June 1989. Springer—Verlag.

R. J. R. Back and K. Sere. Deriving an occam implementation of action systems. In Third
BCS Refinement Workshop, Lecture Notes in Computer Science. Springer—Verlag, January
1990.

R. J. R. Back and K. Sere. Superposition refinement of parallel algorithms. In K. R.
Parker and G. A. Rose, editors, Formal Description Techniques IV, IFIP Transaction C-2.
North—Holland, 1992.

R. J. R. Back and J. von Wright. Refinement calculus I: Sequential nondeterministic pro-
grams. In J. W. deBakker, W. P. deRoever, and G. Rozenberg, editors, Stepwise Refinement
of Distributed Systems, Lecture Notes in Computer Science, pages 42-66. Springer—Verlag,
1990.

R. Bagrodia. An environment for the design and performance analysis of distributed systems.
PhD thesis, The University of Texas at Austin, Austin, Texas, 1987.

J. H. C.A.R. Hoare and J. Sanders. Prespecification in data refinement. Information Pro-
cessing Letters, 25:71-76, 1987.

K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison—Wesley,
1988.

W. Chen and J. T. Udding. Towards a calculus of data refinement. In Mathematics of
Program Construction, volume 375 of Lecture Notes in Computer Science, Groningen, The
Netherlands, June 1989. Springer—Verlag.

P. Gardiner and C. Morgan. Data refinement of predicate transformers. Theoretical Comput.
Sci., 87(1):143-162, 1991.

D. Gries and J. Prins. A new notion of encapsulation. In Proc. SIGPLAN Symp. Language
Issues in Programming Environments, June 1985.

C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica, 1(4):271-281,
1972.

C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666—677, August 1978.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

C. Jones. Software Development: A Rigorous Approach. Prentice-Hall International, 1980.

17

[24] B. Jonsson. Compositional Verification of Distributed Systems. PhD thesis, Dept. of Com-
puter Systems, Uppsala University, Uppsala, 1987. Available as report DoCS 87/09.

[25] B. Jonsson. On decomposing and refining specifications of distributed systems. In REX
Workshop for Refinement of Distributed Systems, volume 430 of Lecture Notes in Computer
Science, Nijmegen, The Netherlands, 1989. Springer—Verlag.

[26] S. S. Lam and A. U. Shankar. A relational notation for state transition systems. Technical
Report TR-88-21, Dept. of Computer Sciences, University of Texas at Austin, 1988.

[27] L. Lamport. Reasoning about nonatomic operations. In Proc. 10th ACM Conference on
Principles of Programming Languages, pages 28-37, 1983.

[28] L. Lamport. A Temporal Logic of Actions. Src report 57, Digital SRC, 1990.

[29] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proc. 6th ACM Symp. on Principles of Distributed Computing, pages 137-151, 1987.

[30] Z. Manna and A. Pnueli. How to cook a temporal proof system for your pet language. In
Proc. 10%* ACM Symp. on Principles of Programming Languages, pages 141-154, 1983.

[31] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes of Computer
Science. Springer Verlag, 1980.

[32] C. Morgan and J. Woodcock. Of wp and CSP. In Proceedings of VDM-91, 1991.

[33] C. C. Morgan. Data refinement by miracles. Information Processing Letters, 26:243-246,
January 1988.

[34] J. M. Morris. Laws of data refinement. Acta Informatica, 26:287-308, 1989.

[35] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs i. Acta Infor-
matica, 6:319-340, 1976.

[36] E. W. Stark. Proving entailment between conceptual state specifications. Theoretical Com-
put. Sci., 56:135-154, 1988.

[37] J. von Wright. Data refinement and the simulation method. Reports on computer science
and mathematics 138, Abo Akademi, 1992.

[38] J. von Wright. Data fefinement with stuttering. Reports on computer science and mathe-
matics 137, Abo Akademi, 1992.

18

