Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

The two original refinement algorithms for defining subdivision surfaces were based on the biquadratic and bicubic tensor-product B-splines. At about the same time the use of box-splines as a more inclusive extension of B-splines to multivariate interpolation and approximation was being developed, and fairly soon a refinement algorithm over triangulations based on a box-spline was published.

It turns out that the box-spline provides an excellent context for the presentation of variation diminishing refinement methods, and so this tutorial uses that context as its centre.

The tutorial starts by a brief recapitulation of B-splines and their refinement by knot-insertion, and then shows how the results are achieved more transparently by the use of box-splines and the generating function notation. This is then extended to the bivariate case and to bivariate irregular grids, where the principal schemes are outlined. Finally we consider issues arising in the implementation of refinement algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Ball and D. Storry. Conditions for tangent plane continuity over recursively generated B-spline surfaces. ACM Trans. on Graphics 7, 1988, 83–102.

    Article  MATH  Google Scholar 

  2. E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 1978, 350–355 (reprinted in Seminal Graphics, Wolfe (ed.), SIGGRAPH 1998).

    Article  Google Scholar 

  3. G. M. Chaikin. An algorithm for high-speed curve generation. Comp. Graphics and Image Proc. 3, 1974, 346–349.

    Article  Google Scholar 

  4. D. W. H. Doo and M. A. Sabin. Behaviour of recursive subdivision surfaces near extraordinary points. Computer-Aided Design 10, 1978, 356–360 (reprinted in Seminal Graphics, Wolfe (ed.), SIGGRAPH 1998).

    Article  Google Scholar 

  5. C. de Boor. Cutting corners always works. Comput. Aided Geom. Design 4, 1987, 125–132.

    MATH  Google Scholar 

  6. C. de Boor, K. Höllig, and S. Riemenschneider. Box Splines. Springer-Verlag, New York, 1993.

    Book  MATH  Google Scholar 

  7. G. de Rham. Un peu de mathématique a propos d’une courbe plane. Elemente der Mathematik 2, 1947, 73–76, 89–97.

    Google Scholar 

  8. N. Dyn. Analysis of convergence and smoothness by the formalism of Laurent polynomials. This volume.

    Google Scholar 

  9. A. R. Forrest. Notes of Chaikin’s algorithm. CGM74–1, University of East Anglia, 1974.

    Google Scholar 

  10. C. T. Loop. Smooth subdivision surfaces based on triangles. Master’s Thesis, University of Utah, 1987.

    Google Scholar 

  11. C. T. Loop. Triangle mesh subdivision with bounded curvature and the convex hull property. To appear in The Visual Computer, 2001.

    Google Scholar 

  12. H. Prautzsch and G. Umlauf. Improved triangular subdivision schemes. Proc. Computer Graphics International 1998, 626–632.

    Google Scholar 

  13. E. Quak. Nonuniform B-splines and B-wavelets. This volume.

    Google Scholar 

  14. R. F. Riesenfeld. On Chaikin’s algorithm. IEEE Comp. Graph. Appl. 4, 1975, 304–310.

    Google Scholar 

  15. M. A. Sabin. Cubic recursive division with bounded curvature. Curves and Surfaces, P.-J. Laurent, A. Le Méhauté, and L. L. Schumaker (eds.), Academic Press, New York, 1991, 411–414.

    Google Scholar 

  16. M. A. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. This volume.

    Google Scholar 

  17. A. Sommerfeld. Eine besonders anschauliche Ableitung des Gaußschen Fehlergesetzes. Festschrift Ludwig Boltzmann gewidmet zum sechzigsten Geburtstag. Verlag von Johann Ambrosius Barth, 1904, 848–859.

    Google Scholar 

  18. D. Zorin. Stationary Subdivision and Multiresolution Surface Representations. PhD Thesis, California Institute of Technology, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sabin, M. (2002). Subdivision of Box-Splines. In: Iske, A., Quak, E., Floater, M.S. (eds) Tutorials on Multiresolution in Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04388-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04388-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07819-4

  • Online ISBN: 978-3-662-04388-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics