Texts in Theoretical Computer Science An EATCS Series

Editors: W. Brauer G. Rozenberg A. Salomaa On behalf of the European Association for Theoretical Computer Science (EATCS)

Advisory Board: G. Ausiello M. Broy S. Even J. Hartmanis N. Jones T. Leighton M. Nivat C. Papadimitriou D. Scott

Springer-Verlag Berlin Heidelberg GmbH

Juraj Hromkovič

Algorithmics for Hard Problems

Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics

With 64 Figures

Author Prof. Dr. Juraj Hromkovič RWTH Aachen Computer Science I, Algorithms and Complexity Ahornstraße 55, 52074 Aachen, Germany jh@11.informatik.rwth-aachen.de

Series Editors

Prof. Dr. Wilfried Brauer Institut für Informatik, Technische Universität München Arcisstrasse 21, 80333 München, Germany Brauer@informatik.tu-muenchen.de

Prof. Dr. Grzegorz Rozenberg Leiden Institute of Advanced Computer Science University of Leiden Niels Bohrweg 1, 2333 CA Leiden, The Netherlands rozenber@liacs.nl

Prof. Dr. Arto Salomaa Turku Centre for Computer Science Lemminkäisenkatu 14 A, 20520 Turku, Finland asalomaa@utu.fi

ACM Computing Classification (1998): F.2, F.1.2-3, I.1.2, G.1.2, G.1.6, G.2.1, G.3, I.2.8

ISBN 978-3-662-04618-0

Library of Congress Cataloging-in-Publication Data applied for Die Deutsche Bibliothek – CIP-Einheitsaufnahme Hromkovič, Juraj: Algorithmics for hard problems: introduction to combinatorial optimization, randomization, approximation, and heuristics / Juraj Hromkovič. (Texts in theoretical computer science) ISBN 978-3-662-04618-0 ISBN 978-3-662-04616-6 (eBook) DOI 10.1007/978-3-662-04616-6

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German copyright law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag Berlin Heidelberg GmbH. Violations are liable for prosecution under the German Copyright Law. http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001 Originally published by Springer-Verlag Berlin Heidelberg New York in 2001 Softcover reprint of the hardcover 1st edition 2001

The use of general descriptive names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: design & production GmbH, Heidelberg Typesetting: Camera-ready by the author Printed on acid-free paper SPIN: 10702395 45/3142 ud - 543210

To PETRA and PAULA

You have been told also that life is darkness, and in your weariness you echo what was said by the weary.

And I say that life is indeed darkness save when there is urge,

And all urge is blind save when there is knowledge,

And all knowledge is vain save where there is work,

And all work is empty save when there is love;

And when you work with love you bind yourself to yourself, and to one another, and to God ...

Work is love made visible.

And if you cannot work with love but only with distances, it is better that you should leave your work and sit at the gate of the temple and take alms of those who work with joy.

KAHLIL GIBRAN The Prophet

Preface

Algorithmic design, especially for hard problems, is more essential for success in solving them than any standard improvement of current computer technologies. Because of this, the design of algorithms for solving hard problems is the core of current algorithmic research from the theoretical point of view as well as from the practical point of view. There are many general textbooks on algorithmics, and several specialized books devoted to particular approaches such as local search, randomization, approximation algorithms, or heuristics. But there is no textbook that focuses on the design of algorithms for hard computing tasks, and that systematically explains, combines, and compares the main possibilities for attacking hard algorithmic problems. As this topic is fundamental for computer science, this book tries to close this gap.

Another motivation, and probably the main reason for writing this book, is connected to education. The considered area has developed very dynamically in recent years and the research on this topic discovered several profound results, new concepts, and new methods. Some of the achieved contributions are so fundamental that one can speak about paradigms which should be included in the education of every computer science student. Unfortunately, this is very far from reality. This is because these paradigms are not sufficiently known in the computer science community, and so they are insufficiently communicated to students and practitioners. The main reason for this unpleasant situation is that simple explanations and transparent presentations of the new contributions of algorithmics and complexity theory, especially in the area of randomized and approximation algorithms, are missing on the level of textbooks for introductory courses. This is the typical situation when principal contributions, whose seeping into the folklore of the particular scientific discipline is only a question of time, are still not recognized as paradigms in the broad community, and even considered to be too hard and too special for basic courses by non-specialists in this area. Our aim is to try to speed up this transformation of paradigmatic research results into educational folklore.

This book should provide a "cheap ticket" to algorithmics for hard problems. Cheap does not mean that the matter presented in this introductory material is not precisely explained in detail and in its context, but that it is presented as transparently as possible, and formalized by using mathematics that is as simple as possible for this purpose. Thus, the main goal of this book can be formulated as the following optimization problem.

Input: A computer science student or a practitioner

Constraints: • To teach the input the main ideas, concepts, and algorithm design techniques (such as pseudo-polynomial-time algorithms,

parameterized complexity, local search, branch-and-bound, relaxation to linear programming, randomized algorithms, approximation algorithms, simulated annealing, genetic algorithms, etc.) for solving hard problems in a transparent and well-understandable way.

- To explain the topic on the level of clear, informal ideas as well as on the precise formal level, and to be self-contained with respect to all mathematics used.
- To discuss the possibilities to combine different methods in order to attack specific hard problems as well as a possible speedup by parallelization.
- To explain methods for theoretical and experimental comparisons of different approaches to solving particular problems.
- Costs: The expected time that an input needs to learn the topic of the book (particularly, the level of abstractions of mathematics used and the hardness of mathematical proofs).

Objective: Minimization.

I hope that this book provides a feasible solution to this hard optimization problem. To judge the quality (approximation ratio) of the solution provided in this book is left to the reader.

I would like to express my deepest thanks to Hans-Joachim Böckenhauer, Erich Valkema, and Koichi Wada for carefully reading the whole manuscript and for their numerous comments and suggestions. I am indebted to Ivana Černá, Vladimír Černý, Alexander Ferrein, Ralf Klasing, Dana Pardubská, Hartmut Schmeck, Georg Schnitger, Karol Tauber, Ingo Wegener, and Peter Widmayer for interesting discussions or their comments on earlier drafts of this book. Special thanks go to Hans Wössner and the team of Springer-Verlag for their excellent assistance during the whole process of the manuscript preparation. The expertise and helpfulness of our LATEX expert Alexander Ferrein was very useful and is much appreciated.

Last but not least I would like to thank Tanja for her patience with me during the work on this book.

Aachen, March 2001

Juraj Hromkovič

Table of Contents

1	Intro	oduction	n	•	1			
2	Elementary Fundamentals							
	2.1	Introd	uction		11			
	2.2	Funda	mentals of Mathematics		13			
		2.2.1	Linear Algebra		13			
		2.2.2	Combinatorics, Counting, and Graph Theory		30			
		2.2.3	Boolean Functions and Formulae		46			
		2.2.4	Algebra and Number Theory		55			
		2.2.5	Probability Theory		73			
	2.3	Funda	mentals of Algorithmics		86			
		2.3.1	Alphabets, Words, and Languages		86			
		2.3.2	Algorithmic Problems		90			
		2.3.3	Complexity Theory		107			
		2.3.4	Algorithm Design Techniques	•	128			
3	Dete	Deterministic Approaches						
	3.1	Introd	uction		143			
	3.2	Pseudo	o-Polynomial-Time Algorithms		146			
		3.2.1	Basic Concept		146			
		3.2.2	Dynamic Programming and Knapsack Problem		148			
		3.2.3	Limits of Applicability		151			
	3.3	Param	neterized Complexity		153			
		3.3.1	Basic Concept		153			
		3.3.2	Applicability of Parameterized Complexity		155			
		3.3.3	Discussion		158			
	3.4	Branch-and-Bound			159			
		3.4.1	Basic Concept		159			
		3.4.2	Applications for MAX-SAT and TSP		161			
		040	Discussion		167			
		3.4.3		•	101			
	3.5	3.4.3 Loweri	ing Worst Case Complexity of Exponential Algorithms	•	168			
	3.5	3.4.3 Loweri 3.5.1	ing Worst Case Complexity of Exponential Algorithms . Basic Concept	•	168 168			

	3.6	Local Search		
		3.6.1	Introduction and Basic Concept	173
		3.6.2	Examples of Neighborhoods and	
			Kernighan-Lin's Variable-Depth Search	177
		3.6.3	Tradeoffs Between Solution Quality and Complexity	182
	3.7	Relax	ation to Linear Programming	193
		3.7.1	Basic Concept	193
		3.7.2	Expressing Problems as Linear Programming Problems	195
		3.7.3	The Simplex Algorithm	199
	3.8	Biblio	graphical Remarks	209
4	Apr	oroxima	tion Algorithms	213
	4.1	Introd	luction	213
	4.2	Funda	amentals	214
		4.2.1	Concept of Approximation Algorithms	214
		422	Classification of Optimization Problems	218
		423	Stability of Approximation	219
		424	Dual Approximation Algorithms	210
	43	Algori	ithm Design	224
	1.0	431	Introduction	226
		432	Cover Problems Greedy Method	220
		1.0.2	and Belaxation to Linear Programming	227
		433	Maximum Cut Problem and Local Search	235
		4.0.0	Knapsack Problem and PTAS	200
		435	Traveling Salesperson Problem and	200
		4.0.0	Stability of Approximation	248
		436	Bin-Packing Scheduling and	210
		1.0.0	Dual Approximation Algorithms	273
	44	Inapp	roximability	281
	1.1	4 4 1	Introduction	281
		4.4.2	Reduction to NP-Hard Problems	201
		4.4.2	Approximation Programing Reductions	202
		4.4.5	Probabilistic Proof Checking and Inapproximability	204
	15	4.4.4 Biblio	araphical Remarks	294
	4.0	DIDIIO		303
5	Ran	domized	d Algorithms	307
	5.1	Introd	uction	307
	5.2	Classif	fication of Randomized Algorithms and Design Paradigms	309
		5.2.1	Fundamentals	309
		5.2.2	Classification of Randomized Algorithms	311
		5.2.3	Paradigms of Design of Randomized Algorithms	325
	5.3	Design	of Randomized Algorithms	329
		5.3.1	Introduction	329
		5.3.2	Quadratic Residues, Random Sampling, and Las Vegas .	330
			· · · · · ·	

		5.3.3	Primality Testing, Abundance of Witnesses,				
			and One-Sided-Error Monte Carlo	335			
		5.3.4	Some Equivalence Tests, Fingerprinting,				
			and Monte Carlo	342			
		5.3.5	Randomized Optimization Algorithms for MIN-CUT	348			
		5.3.6	MAX-SAT, Random Sampling, and Relaxation				
			to Linear Programming with Random Rounding	357			
		5.3.7	3SAT and Randomized Multistart Local Search	363			
	5.4	Deran	domization	367			
		5.4.1	Fundamental Ideas	367			
		5.4.2	Derandomization by the Reduction				
			of the Probability Space Size	369			
		5.4.3	Reduction of the Size of the Probability Space				
			and MAX- $EkSAT$	374			
		5.4.4	Derandomization by the Method	•••=			
		0.1.1	of Conditional Probabilities	376			
		545	Method of Conditional Probabilities	0.0			
		0.1.0	and Satisfiability Problems	379			
	55	Biblio	oraphical Remarks	383			
	0.0	Dibilo		000			
6	Heu	ristics		387			
	6.1	Introd	luction	387			
	6.2	Simula	ated Annealing	389			
		6.2.1	Basic Concept	389			
		6.2.2	Theory and Experience	393			
		6.2.3	Randomized Tabu Search	397			
	63	Genet	ic Algorithms	400			
	0.0	631	Basic Concept	400			
		632	Adjustment of Free Parameters	408			
	6.4	Biblio	graphical Remarks	414			
	0.1	210110					
7	A G	uide to	Solving Hard Problems	417			
	7.1	Introd	luction	417			
	7.2	Taking	g over an Algorithmic Task or a Few Words about Money	418			
	7.3	Combining Different Concepts and Techniques					
	7.4	Comp	aring Different Approaches	422			
	7.5	Speed	up by Parallelization	424			
	7.6	New T	Technologies	433			
		7.6.1	Introduction	433			
		7.6.2	DNA Computing	434			
		7.6.3	Quantum Computing	442			
	7.7	Glossa	ary of Basic Terms	447			
			J				
Re	eferen	ces .		459			
In	dex			481			