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Preface 

The foundations of computational complexity theory go back to Alan Thring 
in the 1930s who was concerned with the existence of automatic procedures 
deciding the validity of mathematical statements. The first example of such 
a problem was the undecidability of the Halting Problem which is essentially 
the question of debugging a computer program: Will a given program eventu­
ally halt? Computational complexity today addresses the quantitative aspects 
of the solutions obtained: Is the problem to be solved tractable? But how does 
one measure the intractability of computation? Several ideas were proposed: 
A. Cobham [Cob65] raised the question of what is the right model in order to 
measure a "computation step" , M. Rabin [Rab60] proposed the introduction 
of axioms that a complexity measure should satisfy, and C. Shannon [Sha49] 
suggested the boolean circuit that computes a boolean function. 

However, an important question remains: What is the nature of computa­
tion? In 1957, John von Neumann [vN58] wrote in his notes for the Silliman 
Lectures concerning the nature of computation and the human brain that 

... logics and statistics should be primarily, although not exclusively, 
viewed as the basic tools of 'information theory'. Also, that body 
of experience which has grown up around the planning, evaluating, 
and coding of complicated logical and mathematical automata will 
be the focus of much of this information theory. The most typical, 
but not the only, such automata are, of course, the large electronic 
computing machines. 
Let me note, in passing, that it would be very satisfactory if one 
could talk about a 'theory' of such automata. Regrettably, what at 
this moment exists - and to what I must appeal - can as yet be 
described only as an imperfectly articulated and hardly formalized 
'body of experience'. 

With almost a half century after von Neumann's death, the theory of com­
putation and automata is now a well-developed and sophisticated branch 
of mathematics and computer science. As he forecasted, the principal tools 
have proven to come from the fields of mathematical logic, combinatorics, 
and probability theory. 

Using these tools, we have attempted to give a survey of the present 
state of research in the study of boolean functions, formulas, circuits, and 
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propositional proof systems. All of these subjects are related to the overrid­
ing concern of how computation can be modeled, and what limitations and 
interrelations there are between different computation models. 

This text is structured as follows. We begin with methods for the construc­
tion of boolean circuits which compute certain arithmetic and combinatorial 
functions, and investigate upper and lower bounds for circuit families. The 
techniques used are from combinatorics, probability and finite group theory. 
We then survey steps taken in a program initiated by S.A. Cook of investi­
gating non-deterministic polynomial time, from a proof-theoretic viewpoint. 
Specifically, lower bounds are presented for lengths of proofs for families of 
propositional tautologies, when proven in certain proof systems. Techniques 
here involve both logic and finite combinatorics and are related to constant 
depth boolean circuits and to monotone arithmetic circuits. 

Outline of the book 

A more detailed breakdown of the book is as follows. In Chapter 1, circuits 
are constructed for data processing (string searching, parsing) and arithmetic 
(multiplication, division, fast Fourier transform). This material is intended to 
provide the reader with concrete examples, before initiating a more abstract 
study of circuit depth and size. 

Chapter 2 presents a sampling of techniques to prove size lower bounds 
for certain restricted classes of circuits - constant depth or monotonic. These 
include Razborov's elegant constructive proof of the Hastad switching lemma, 
the Haken-Cook monotonic real circuit lower bound for the broken moskito 
screen problem, Razborov's algebraic approximation method for majority, 
and Smolensky's subsequent generalization to finite fields. 

Chapter 3 studies symmetric boolean functions and related invariance 
groups. A characterization is given of those symmetric functions computable 
by constant depth polysize circuits. Invariance groups of boolean functions 
are characterized by a condition concerning orbit structure, and tight upper 
bounds are given for almost symmetric functions. Applications are given to 
anonymous networks such as rings and hypercubes. Most of these results are 
due to P. Clote and E. Kranakis. 

Chapter 4 concerns the empirically observed threshold phenomenon con­
cerning clause density r = ~, where with high probability random formulas 
in k-CNF form having m clauses over n variables are satisfiable (unsatisfiable) 
if r is less (greater) than a threshold limit. The results of this chapter include 
a proof of an analytic upper bound, a result due to M. Kirousis, E. Kranakis 
and D. Krizanc. 

Chapter 5 studies propositional proof systems, which have relevance to 
complexity theory, since NP = co-NP if and only if there exists a polynomially 
bounded propositional proof system. In obtaining exponential lower bounds 
for increasingly stronger proof systems, new techniques have been developed, 
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such as random restriction, algebraic and bottleneck counting methods -
these techniques may ultimately playa role in separating complexity classes, 
and in any case are of interest in themselves. The proof systems include 
resolution, cutting planes, threshold logic, Nullstellensatz system, polynomial 
calculus, constant depth Frege, Frege, extended Frege, and substitution Frege 
systems. 

In Chapter 6 we define various computation models including uniform 
circuit families, Turing machines and parallel random access machines, and 
illustrate some features of parallel computation by giving example programs. 
We then give characterizations of different parallel and sequential complexity 
classes in terms of function algebras - i.e., as the smallest class of functions 
containing certain initial functions and closed under certain operations. In 
the early 1960's, A. Cobham first defined polynomial time P and argued its 
robustness on the grounds of his machine independent characterization of P 
via function algebras. 

With the development that certain programming languages now admit 
polymorphism and higher type functionals, using function algebras, complex­
ity theory can now be lifted in a natural manner to higher types, a develop­
ment which is the focus of Chapter 7. In that chapter, a new yet unpublished 
characterization of type 2 NC 1 functionals (due to the first author) is given 
in terms of a natural function algebra and related lambda calculus. 

How to use the book 

This text is to be of use to students as well as researchers interested in the 
emerging field of logical complexity theory (also called implicit complexity 
theory). The chapters of the book can be read as independent units. However 
one semester courses can be given as follows: 

Semester Course Chapters 

Boolean Functions & Complexity 1,2,3 

Proof Systems & Satisfiability 5,4 

Machine Models, Function Algebras & Higher Types 6, 7 

At the end of every chapter, there are several exercises: some are simple 
extensions of results in the book while others constitute the core result of a 
research article. The various levels of difficulty are indicated with an asterisk 
placed before more difficult problems, and two asterisks for quite challenging 
and sometimes open research problems. The reader is invited to attempt 
them all. 
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