
Texts in Theoretical Computer Science
An EATCS Series

Editors: W. Brauer G. Rozenberg A. Salomaa
On behalf of the European Association
for Theoretical Computer Science (EATCS)

Advisory Board: G. Ausiello M. Broy C. S. Calude
S. Even J. Hartmanis J. Hromkovic N. Jones
T. Leighton M. Nivat C. Papadimitriou D. Scott

Springer-Verlag Berlin Heidelberg GmbH

Simona Ronchi DeHa Rocca
Luca Paolini

The Parametric
lambda Calculus
A Metamodel for Computation

Springer

Authors
Prof. Simona Ronchi Delia Rocca
Universita di Torino
Dipartimento di Informatica
corso Svizzera 185
10149 Torino, Italy
ronchi@di.unito.it
www.di.unito.iU-ronchi

Dr. Luca Paolini
Universita di Torino
Dipartimento di Informatica
corso Svizzera 185
10149 Torino, Italy
paolini@di.unito.it
www.di.unito.it/-paolini

Series Editors
Prof. Dr. Wilfried Brauer
Institut rur Informatik der TUM
Boltzmannstr. 3, 85748 Garching, Germany
Brauer@informatik.tu-muenchen.de

Prof. Dr. Grzegorz Rozenberg
Leiden Institute of Advanced Computer Science
University of Leiden
Niels Bohrweg 1,2333 CA Leiden, The Netherlands
rozenber@liacs.nl

Prof. Dr. Arto Salomaa
Turku Centre for Computer Science
Lemminkiiisenkatu 14 A, 20520 Turku, Finland
asalomaa@utu.fi

Library of Congress Cataloging-in-Publication Data

Ronchi Della Rocca, S. (Simona)
The parametric lambda calculus : A metamodel for computation / Simona Ronchi Della Rocca,
Luca Paolini.
p. cm. - (Texts in theoretical computer science)
Includes bibliographical references and index.
ISBN 978-3-642-05746-5 ISBN 978-3-662-10394-4 (eBook)
DOI 10.1007/978-3-662-10394-4
1. Lambda calculus. 1. Paolini, Luca, 1970- II. Title. III. Series.
QA9.5.R66 2004 511.3'5-dc22 2003069100

ACM Computing Classification (1998): FA, F,3, 1.2.3, D.2

ISBN 978-3-642-05746-5

This work is subject to copyright. AlI rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law of
September 9, 1965, in its current version, and permission for use must always be obtained from
Springet-Verlag Berlin Heidelberg GmbH .

Violations are liable for prosecution under the German Copyright Law.

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Originally published by Springet:-Verlag Berlin Heidelberg New York in 2004
Softcover reprint of the hardcover 1 st edition 2004

The use of general descriptive names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant protective laws and
therefore free for general use.

Cover Design: KiinkelLopka, Heidelberg
1)1pesetting: Camera-ready by the authors
Printed on acid-free paper 45/3142/GF - 5432 1 O

To Corrado Băhm, fram which Simona and -
by transitivity - Luca leamed the pleasure
of research and the interest in A-calculus

Preface

The A-calculus was invented by Church in the 1930s with the purpose of sup
plying a logical foundation for logic and mathematics [25]. Its use by Kleene
as a coding for computable functions makes it the first programming lan
guage, in an abstract sense, exactly as the Thring machine can be considered
the first computer machine [57]. The A-calculus has quite a simple syntax
(with just three formation rules for terms) and a simple operational seman
tics (with just one operation, substitution), and so it is a very basic setting
for studying computation properties.

The first contact between A-calculus and real programming languages was
in the years 1956-1960, when McCarthy developed the LISP programming
language, inspired from A-calculus, which is the first "functional" program
ming language, Le., where functions are first-dass citizens [66]. But the use
of A-calculus as an abstract paradigm for programming languages started
later as the work of three important scientists: Strachey, Landin and B6hm.
Strachey used the A-notation as a descriptive tool to represent functional
features in programming when he posed the basis for a formal semantics of
programming languages [92]. Landin formalized the idea that the semantics
of a programming language can be given by translating it into a simpler
language that is easier to understand. He identified such a target language
in A-calculus and experimented with this idea by giving a complete transla
tion of ALGOL60 into A-calculus [64]. Moreover, he dedared in [65] that a
programming language is nothing more than A-calculus plus some "syntactic
sugar". B6hm was the first to use A-calculus as an effective programming
language, defining, with W. Gross, the CUCH language, which is a mixture
of A-calculus and the Curry combinators language, and showing how to rep
resent in it the most common data structures [19].

But, until the end of the 1960s, A-calculus suffered from the lack of a for
mal semantics. In fact, while it was possible to codify in it aH the computable
functions, the meaning of a generic A-term not related to this coding was un
dear. The attempt to interpret A-terms as set-theoretic functions failed, since
it would have been necessary to interpret it into a set D isomorphic to the
set offunctions from D to D, which is impossible since the two spaces always
have different cardinality. Scott [88, 89] solved the problem by interpreting
A-calculus in a lattice isomorphic to the space of its continuous functions,

VIII Preface

thus giving it a clear mathematical interpretation. So the technique of inter
pretation by translation, first developed by Landin, became a standard tool
to study the denotational semantics of programming languages; almost all
textbooks in denotational semantics follow this approach [91, 98].

But there was a gap between A-calculus and the real functional program
ming languages. The majority of real functionallanguages have a "call-by
value" parameter passing policy, Le., parameters are evaluated before being
passed to a function, while the reduction rule of A-calculus reflects a "call
by-name" policy, Le., a policy where parameters are passed without being
evaluated. In the folklore there was the idea that a call-by-value behaviour
could be mimicked in A-calculus just by defining a suitable reduction strategy.
Plotkin proved that this intuition was wrong and that A-calculus is intrinsi
cally call-by-name [78]. So, in order to describe the call-by-value evaluation,
he proposed a difIerent calculus, which has the same syntax as A-calculus,
but a difIerent reduction rule.

The aim of this book is to introduce both the call-by-name and the call
by-value A-calculi and to study their syntactical and semantical properties, on
which their status of paradigmatic programming languages is based. In order
to study them in a uniform way we present a new calculus, the A.1-calculus,
whose reduction rule is parametric with respect to a subset .1 of terms (called
the set of input values) that enjoy some suitable conditions. DifIerent choices
of .1 allow us to define difIerent languages, in particular the two A-calculus
variants we are speaking about. The most interesting feature of A.1-calculus
is that it is possible to prove important properties (like confluence) for a large
class of languages in just one step. We think that A.1-calculus can be seen as
the foundation of functional programming.

Organizat ion of the Book

The book is divided into four parts, each one composed of difIerent chap
ters. The first part is devoted to the study of the syntax of A.1-calculus. Some
syntactical properties, like confluence and standardization, can be studied for
the whole .1 class. Other properties, like solvability and separability, cannot
be treated in a uniform way, and they are therefore introduced separately for
difIerent instances of .1.

In the second part the operational semantics of A.1-calculus is studied.
The notion of operational semantics can be given in a parametric way, by sup
plying not only a set ofinput values but also a set of output values 8, enjoying
some very natural properties. A universal reduction machine is defined, para
metric into both .1 and 8, enjoying a sort of correctness property in the sense
that, if a term can be reduced to an output value, then the machine stops, re
turning a term operationally equivalent to it. Then four particular reduction
machines are presented, three for the call-by-name A-calculus and one for the
call-by-value A-calculus, thereby presenting four operational behaviours that

Preface IX

are particularly interesting for modeling programming languages. Moreover,
the notion of extensionality is revised, giving a new parametric definit ion that
depends on the operational semantics we want to consider.

The third part is devoted to denotational semantics. The general notion
of a model of ALl-calculus is defined, and then the more restrictive and use
fuI notion of a filter model, based on intersection types, is given. Then four
particular filter models are presented, each one correct with respect to one of
the operational semantics studied in the previous part. For two of them com
pleteness is also proved. The other two models are incomplete: we prove that
there are no filter models enjoying the completeness property with respect
to given operational semantics, and we build two complete models by using
a technique based on intersection types. Moreover, the reIat ion between the
filter models and Scott's models is given.

The fourth part deals with the computational power of ALl-calculus. It is
well known that A-calculus is TUring complete, in both its calI-by-name and
calI-by-value variants, i.e. it has the power of the computable functions. Here
we prove something more, namely that each one of the reduction machines
we present in the third part of this book can be used for computing alI the
computable functions.

Use of the Book

This book is dedicated to researchers, and it can be used as a textbook
for master's Of PhD courses in Foundations of Computer Science. Moreover,
we wish to advise the reader that its aim is not to cover alI possible topics
concerning A-calculus, but just those syntactical and semantics properties
which can be used as tools for the foundation of programming languages.
The re ader interested in studying A-calculus in it self can use the classical
textbook by Barendregt [9], or other more descriptive ones such as [51] or
[60]. The reader interested in a typed approach can read MitchelI's text [69]
for an introduction, in which two chapters are dedicated to simply typed A
calculus and its model, and the book of Hindley for a complete development
of the topic [49].

Acknowledgement. Both authors would like to thank alI the people of the
"lambda-group" at the Dipartimento di Informatica of the Universita di
Torino for their support and collaboration. Moreover they are grateful to
Roger Hindley and Elaine Pimentel for pointing out some inaccuracies. Luca
Paolini thanks Pino Rosolini for the useful and interesting discussions about
the topics of this book. Simona Ronchi DelIa Rocca did the final revision of
the book during a sabbatical period. Some friends offered her hospitality and
a stimulating scientific environment: Betti Venneri, Gigi Liquori, Rocco De
Nicola, Pierre Lescanne and Philippe De Groote. To alI of them she wants to

X Preface

express her gratitude. Last but not least, both the authors thank the pub
lisher lngeborg Mayer, whose patient assistance made possible the publication
of this book.

Torino, May 2004 Simona Ronchi DeHa Rocca
Luca Paolini

Contents

Part I. Syntax

1. The Parametric A-Calculus 3
1.1 The Language of >,-Terms 3
1.2 The >'d-Calculus . 6

1.2.1 Proof of Confluence and Standardization Theorems . .. 14
1.3 d-Theories .. 21

2. The Call-by-Name A-Calculus 25
2.1 The Syntax of >'A-Calculus 25

2.1.1 Proof of A-Solvability Theorem 27
2.1.2 Proof of Bohm's Theorem .. 28

3. The Call-by-Value A-Calculus .. 35
3.1 The Syntax of the >,r-Calculus " 35

3.1.1 Ef-Confluence and Ef-Standardization. 41
3.1.2 Proof of Potential r -Valuability and r -Solvability

Theorems 43
3.1.3 Proof of r-Separability Theorem 49

3.2 Potentially r-Valuable Terms and A-Reduction 58

4. FUrther Reading. 61

Part II. Operational Semantics

5. Parametric Operational Semantics .. 65
5.1 The Universal d-Reduction Machine. .. 70

6. Call-by-Name Operational Semantics 73
6.1 H-Operational Semantics. .. 73
6.2 N-Operational Semantics. .. 77
6.3 L-Operational Semantics .. 81

6.3.1 An Example 85

XII Contents

7. Call-by-Value Operational Semantics 89
7.1 V-Operational Semantics .. 89

7.1.1 An Example .. 93

8. Operational Extensionality 95
8.1 Operational Semantics and Extensionality 95

8.1.1 Head-Discriminability............................. 99

9. Further Reading .. 101

Part III. Denotational Semantics

10. Ă~-Models ... 105
10.1 Filter AL1-Models 108

11. Call-by-Name Denotational Semantics 119
11.1 The Model1i .. 119

11.1.1 The ~oo-Intersection Relation 129
11.1.2 Proof of the 1i-Approximation Theorem 132
11.1.3 Proof of Semiseparability, 1i-Discriminability and

1i-Characterization Theorems 136
11.2 The Model N .. 144

11.2.1 The ~wlntersection Relation 151
11.2.2 Proof of N-Approximation Theorem 154
11.2.3 Proof of N-Discriminability and N-Characterization

Theorems 157
11.3 The Model C .. 162

11.3.1 Proof of C-Approximation Theorem 168
11.3.2 Proof of Theorems 11.3.15 and 11.3.16 170

11.4 A Fully Abstract Model for the L-Operational Semantics 172
11.5 Crossing Models .. 178

11.5.1 The Model1i 178
11.5.2 The Model N 179
11.5.3 The Model C 179

12. Call-by-Value Denotational Semantics 181
12.1 The Model V .. 181

12.1.1 The ~v'-Intersection Relation 190
12.1.2 Proof of Theorem 12.1.6 192
12.1.3 Proof of the V-Approximation Theorem 195
12.1.4 Proof of Theorems 12.1.24 and 12.1.25 198

12.2 A Fully Abstract Model for the V-Operational Semantics 201

Contents XIII

13. Filter A.d-Models and Domains 207
13.1 Domains .. 207

13.1.1 1i as Domain 214
13.1.2 N as Domain 216
13.1.3 C as Domain 217
13.1.4 Vas Domain 218
13.1.5 Another Domain 219

14. Further Reading .. 221

Part IV. Computational Power

15. Preliminaries ... 225
15.1 Kleene's Recursive Functions 225
15.2 Representing Data Structures 227

16. Representing Functions 233
16.1 Call-by-Name Computational Completeness 233
16.2 Call-by-Value Computational Completeness 237
16.3 Historical Remarks 239

Bibliography 241

Index ... 247

