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Preface 

The A-calculus was invented by Church in the 1930s with the purpose of sup
plying a logical foundation for logic and mathematics [25]. Its use by Kleene 
as a coding for computable functions makes it the first programming lan
guage, in an abstract sense, exactly as the Thring machine can be considered 
the first computer machine [57]. The A-calculus has quite a simple syntax 
(with just three formation rules for terms) and a simple operational seman
tics (with just one operation, substitution), and so it is a very basic setting 
for studying computation properties. 

The first contact between A-calculus and real programming languages was 
in the years 1956-1960, when McCarthy developed the LISP programming 
language, inspired from A-calculus, which is the first "functional" program
ming language, Le., where functions are first-dass citizens [66]. But the use 
of A-calculus as an abstract paradigm for programming languages started 
later as the work of three important scientists: Strachey, Landin and B6hm. 
Strachey used the A-notation as a descriptive tool to represent functional 
features in programming when he posed the basis for a formal semantics of 
programming languages [92]. Landin formalized the idea that the semantics 
of a programming language can be given by translating it into a simpler 
language that is easier to understand. He identified such a target language 
in A-calculus and experimented with this idea by giving a complete transla
tion of ALGOL60 into A-calculus [64]. Moreover, he dedared in [65] that a 
programming language is nothing more than A-calculus plus some "syntactic 
sugar". B6hm was the first to use A-calculus as an effective programming 
language, defining, with W. Gross, the CUCH language, which is a mixture 
of A-calculus and the Curry combinators language, and showing how to rep
resent in it the most common data structures [19]. 

But, until the end of the 1960s, A-calculus suffered from the lack of a for
mal semantics. In fact, while it was possible to codify in it aH the computable 
functions, the meaning of a generic A-term not related to this coding was un
dear. The attempt to interpret A-terms as set-theoretic functions failed, since 
it would have been necessary to interpret it into a set D isomorphic to the 
set offunctions from D to D, which is impossible since the two spaces always 
have different cardinality. Scott [88, 89] solved the problem by interpreting 
A-calculus in a lattice isomorphic to the space of its continuous functions, 



VIII Preface 

thus giving it a clear mathematical interpretation. So the technique of inter
pretation by translation, first developed by Landin, became a standard tool 
to study the denotational semantics of programming languages; almost all 
textbooks in denotational semantics follow this approach [91, 98]. 

But there was a gap between A-calculus and the real functional program
ming languages. The majority of real functionallanguages have a "call-by
value" parameter passing policy, Le., parameters are evaluated before being 
passed to a function, while the reduction rule of A-calculus reflects a "call
by-name" policy, Le., a policy where parameters are passed without being 
evaluated. In the folklore there was the idea that a call-by-value behaviour 
could be mimicked in A-calculus just by defining a suitable reduction strategy. 
Plotkin proved that this intuition was wrong and that A-calculus is intrinsi
cally call-by-name [78]. So, in order to describe the call-by-value evaluation, 
he proposed a difIerent calculus, which has the same syntax as A-calculus, 
but a difIerent reduction rule. 

The aim of this book is to introduce both the call-by-name and the call
by-value A-calculi and to study their syntactical and semantical properties, on 
which their status of paradigmatic programming languages is based. In order 
to study them in a uniform way we present a new calculus, the A.1-calculus, 
whose reduction rule is parametric with respect to a subset .1 of terms (called 
the set of input values) that enjoy some suitable conditions. DifIerent choices 
of .1 allow us to define difIerent languages, in particular the two A-calculus 
variants we are speaking about. The most interesting feature of A.1-calculus 
is that it is possible to prove important properties (like confluence) for a large 
class of languages in just one step. We think that A.1-calculus can be seen as 
the foundation of functional programming. 

Organizat ion of the Book 

The book is divided into four parts, each one composed of difIerent chap
ters. The first part is devoted to the study of the syntax of A.1-calculus. Some 
syntactical properties, like confluence and standardization, can be studied for 
the whole .1 class. Other properties, like solvability and separability, cannot 
be treated in a uniform way, and they are therefore introduced separately for 
difIerent instances of .1. 

In the second part the operational semantics of A.1-calculus is studied. 
The notion of operational semantics can be given in a parametric way, by sup
plying not only a set ofinput values but also a set of output values 8, enjoying 
some very natural properties. A universal reduction machine is defined, para
metric into both .1 and 8, enjoying a sort of correctness property in the sense 
that, if a term can be reduced to an output value, then the machine stops, re
turning a term operationally equivalent to it. Then four particular reduction 
machines are presented, three for the call-by-name A-calculus and one for the 
call-by-value A-calculus, thereby presenting four operational behaviours that 
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are particularly interesting for modeling programming languages. Moreover, 
the notion of extensionality is revised, giving a new parametric definit ion that 
depends on the operational semantics we want to consider. 

The third part is devoted to denotational semantics. The general notion 
of a model of ALl-calculus is defined, and then the more restrictive and use
fuI notion of a filter model, based on intersection types, is given. Then four 
particular filter models are presented, each one correct with respect to one of 
the operational semantics studied in the previous part. For two of them com
pleteness is also proved. The other two models are incomplete: we prove that 
there are no filter models enjoying the completeness property with respect 
to given operational semantics, and we build two complete models by using 
a technique based on intersection types. Moreover, the reIat ion between the 
filter models and Scott's models is given. 

The fourth part deals with the computational power of ALl-calculus. It is 
well known that A-calculus is TUring complete, in both its calI-by-name and 
calI-by-value variants, i.e. it has the power of the computable functions. Here 
we prove something more, namely that each one of the reduction machines 
we present in the third part of this book can be used for computing alI the 
computable functions. 

Use of the Book 

This book is dedicated to researchers, and it can be used as a textbook 
for master's Of PhD courses in Foundations of Computer Science. Moreover, 
we wish to advise the reader that its aim is not to cover alI possible topics 
concerning A-calculus, but just those syntactical and semantics properties 
which can be used as tools for the foundation of programming languages. 
The re ader interested in studying A-calculus in it self can use the classical 
textbook by Barendregt [9], or other more descriptive ones such as [51] or 
[60]. The reader interested in a typed approach can read MitchelI's text [69] 
for an introduction, in which two chapters are dedicated to simply typed A
calculus and its model, and the book of Hindley for a complete development 
of the topic [49]. 
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