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Foreword 

Computer systems are becoming ubiquitous. Many of the most important 
and prevalent ones are reactive systems. Reactive systems include micropro­
cessors, computer operating systems, air traffic control systems, as well as 
on-board avionics and other embedded systems. These systems are charac­
terized technically by their ongoing, ideally infinite behavior; termination is 
impossible or aberrant behavior, in contrast to classical theories of computa­
tion. Reactive systems tend to be characterized in practice by having failure 
modes that can severely compromise safety, even leading to loss of life. Al­
ternatively, errors can have serious financial repercussions such as expensive 
recalls. Reactive systems need to be correct before being deployed. 

To determine whether such reactive systems do behave correctly, a rich 
mathematical theory of verification of reactive systems has been developed 
over the last two decades or so. In contrast to earlier work emphasizing the 
role of proofs in deductive systems to establish correctness, the alternative 
suggestion is to take a model-theoretic view. It turns out that this permits 
the process of reasoning about program correctness to be fully automated in 
principle and partially automated to a high degree in practice. 

It is my pleasure to introduce Klaus Schneider's excellent book Verification 
of Reactive Systems: Formal Methods and Algorithms. This book is the story of 
reactive systems verification, reflecting Klaus's broad expertise on the sub­
ject. It addresses both applications and theory, providing especially strong 
coverage of basic as well as advanced theory not otherwise available in book 
form. Key topics include Kripke and related transition structures, temporal 
logics, automata on infinite strings including Safra's determinization con­
struction, expressiveness and Borel hierarchies of w-languages, as well as 
monadic predicate logics. An underlying theme is the use of the vectored p,­
calculus to provide an elegant "Theory of Everything". Verification of Reactive 
Systems belongs on the bookshelf of every serious researcher into the topic. 
It should also serve as a valuable text for graduate students and advanced 
undergraduates. 

April 2003 E. Allen Emerson, 
Endowed Professor of Computer Sciences 

University of Texas at Austin 



Preface 

The design of modern information processing systems like digital circuits or 
protocols is becoming more and more difficult. A large part of the design 
costs and time (about 70%) is currently spent on methods that try to guaran­
tee the absence of design errors. For this reason, designing systems is now 
more and more a synonym for verifying systems. 

The research into the verification of reactive systems, in particular, into 
model checking, is one of the most impressive successes of theoretical com­
puter science. Two decades after the publication of the basic papers on the 
formal foundation, the methods became mature enough for industrial usage. 
Nowadays, the hardware industry employs hundreds of highly specialized 
researchers working with formal methods to detect design bugs. 

When I entered this field, it was an enormous effort to read hundreds of 
papers to understand the relationships between the different formal methods 
that are currently in use. It was surprising to me that there was no book cov­
ering all these methods, even the basic ones, although there is such a huge 
interest in them. For this reason, I decided to write this book to provide new­
comers and researchers with a textbook that covers most of the relevant lo­
gics, with a particular emphasis on (verification and translation) algorithms. 

The book is intended for graduate students as well as for researchers 
already working in this area. It is self-contained and gives proofs and al­
gorithms for all important constructions. For a less detailed and formal in­
troduction, I want to recommend the book of Clarke, Grumberg, and Peled 
[111J. Supplemental material on actual tools is found in [38J, and further top­
ics on the J1rcalculus and infinite games are found in [221J. 

There are many persons I have to thank for helping me to write this book. 
In particular, I want to thank Detlef Schmid and the hardware verification 
group at the University of Karlsruhe, in particular Jorgos Logothetis, To­
bias Schiile, and Roberto Ziller. Many discussions with Moshe Vardi moved 
me to improve the book. Allen Emerson was soon interested in the project 
and also gave fruitful comments. Moreover, I want to thank Amir Pnueli, 
Wolfgang Thomas, and Peter Schmitt for comments on early versions of the 
manuscript. Last, but not least, it should be mentioned that the editors of 
the EATCS series, in particular, Prof. Brauer, and the team at Springer-Verlag 
helped me to publish this book. 

Kaiserslautern, September 2003 Klaus Schneider 
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