
Texts in Theoretical Computer Science 
An EATCS Series 

Editors: W. Brauer G. Rozenberg A. Salomaa 
On behalf of the European Association 
for Theoretical Computer Science (EATCS) 

Advisory Board: G.Ausiello M. Broy C. Calude 
S. Even J. Hartmanis J. Hromkovic N. Jones T. Leighton 
M. Nivat C. Papadimitriou D. Scott 



Springer-Verlag Berlin Heidelberg GmbH 



Klaus Schneider 

Verification of 
Reactive Systems 
Formal Methods and Algorithms 

With 149 Figures 

Springer 



Author 

Prof. Dr. Klaus Schneider 

FB Informatik 
AG Reaktive Systeme 
Universitat Kaiserslautern 
67653 Kaiserslautern 
Germany 

klaus.schneider@informatik.uni-kl.de 

Series Editors 

Prof. Dr. Wilfried Brauer 
Institut fiir Informatik 
Technische Universitat Miinchen 
Arcisstrasse 21,80333 Miinchen, Germany 
brauer@informatik.tu-muenchen.de 

Prof. Dr. Grzegorz Rozenberg 
Leiden Institute of Advanced Computer Science 
University of Leiden 
Niels Bohrweg 1,2333 CA Leiden, The Netherlands 
rozenber@liacs.nl 

Prof. Dr. Arto Salomaa 
Data City 
Turku Centre for Computer Science 
20 500 Turku, Finland 
asalomaa@utu.fi 

Library of Congress Cataloging-in-Publication Data applied for 

Bibliographic information published by Die Deutsche Bibliothek 
Die Deutsche Bibliothek lists this publication in the Deutsche 
Nationalbibliographie; detailed bibliographic data is available in 
the Internet at <http://dnd.dd.de> 

ACM Computing Classification (1998): F.3.1, D.2A, FA. 1 

ISBN 978-3-642-05555-3 ISBN 978-3-662-10778-2 (eBook) 
DOI 10.1007/978-3-662-10778-2 

This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data 
banks. Duplication of this publication or parts thereof is permitted only under the 
provisions of the German Copyright Law of September 9,1965, in its current version, and 
permission for use must always be obtained from Springer·Veriag BeriIn HeIdelberg GmbH. 

Violations are liable for prosecution under the German Copyright Law. 

springeronline.com 

© Springer-Verlag Berlin Heidelberg 2004 
Onginally published by Springer-Verlag Berlin HeIdelberg New York in 2004 
Softcover reprint of the hardcover 1st edillon 2004 

The use of general descriptive names, trademarks, etc. in this publication does not imply, 
even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 

Cover Design: KiinkeiLopka, Heidelberg 
Typesetting: Camera-ready by the author 
45/3142 - 5 4 3 2 1 0 - Printed on acid-free paper 



To Tim, Katja and Kai 



Foreword 

Computer systems are becoming ubiquitous. Many of the most important 
and prevalent ones are reactive systems. Reactive systems include micropro­
cessors, computer operating systems, air traffic control systems, as well as 
on-board avionics and other embedded systems. These systems are charac­
terized technically by their ongoing, ideally infinite behavior; termination is 
impossible or aberrant behavior, in contrast to classical theories of computa­
tion. Reactive systems tend to be characterized in practice by having failure 
modes that can severely compromise safety, even leading to loss of life. Al­
ternatively, errors can have serious financial repercussions such as expensive 
recalls. Reactive systems need to be correct before being deployed. 

To determine whether such reactive systems do behave correctly, a rich 
mathematical theory of verification of reactive systems has been developed 
over the last two decades or so. In contrast to earlier work emphasizing the 
role of proofs in deductive systems to establish correctness, the alternative 
suggestion is to take a model-theoretic view. It turns out that this permits 
the process of reasoning about program correctness to be fully automated in 
principle and partially automated to a high degree in practice. 

It is my pleasure to introduce Klaus Schneider's excellent book Verification 
of Reactive Systems: Formal Methods and Algorithms. This book is the story of 
reactive systems verification, reflecting Klaus's broad expertise on the sub­
ject. It addresses both applications and theory, providing especially strong 
coverage of basic as well as advanced theory not otherwise available in book 
form. Key topics include Kripke and related transition structures, temporal 
logics, automata on infinite strings including Safra's determinization con­
struction, expressiveness and Borel hierarchies of w-languages, as well as 
monadic predicate logics. An underlying theme is the use of the vectored p,­
calculus to provide an elegant "Theory of Everything". Verification of Reactive 
Systems belongs on the bookshelf of every serious researcher into the topic. 
It should also serve as a valuable text for graduate students and advanced 
undergraduates. 

April 2003 E. Allen Emerson, 
Endowed Professor of Computer Sciences 

University of Texas at Austin 



Preface 

The design of modern information processing systems like digital circuits or 
protocols is becoming more and more difficult. A large part of the design 
costs and time (about 70%) is currently spent on methods that try to guaran­
tee the absence of design errors. For this reason, designing systems is now 
more and more a synonym for verifying systems. 

The research into the verification of reactive systems, in particular, into 
model checking, is one of the most impressive successes of theoretical com­
puter science. Two decades after the publication of the basic papers on the 
formal foundation, the methods became mature enough for industrial usage. 
Nowadays, the hardware industry employs hundreds of highly specialized 
researchers working with formal methods to detect design bugs. 

When I entered this field, it was an enormous effort to read hundreds of 
papers to understand the relationships between the different formal methods 
that are currently in use. It was surprising to me that there was no book cov­
ering all these methods, even the basic ones, although there is such a huge 
interest in them. For this reason, I decided to write this book to provide new­
comers and researchers with a textbook that covers most of the relevant lo­
gics, with a particular emphasis on (verification and translation) algorithms. 

The book is intended for graduate students as well as for researchers 
already working in this area. It is self-contained and gives proofs and al­
gorithms for all important constructions. For a less detailed and formal in­
troduction, I want to recommend the book of Clarke, Grumberg, and Peled 
[111J. Supplemental material on actual tools is found in [38J, and further top­
ics on the J1rcalculus and infinite games are found in [221J. 

There are many persons I have to thank for helping me to write this book. 
In particular, I want to thank Detlef Schmid and the hardware verification 
group at the University of Karlsruhe, in particular Jorgos Logothetis, To­
bias Schiile, and Roberto Ziller. Many discussions with Moshe Vardi moved 
me to improve the book. Allen Emerson was soon interested in the project 
and also gave fruitful comments. Moreover, I want to thank Amir Pnueli, 
Wolfgang Thomas, and Peter Schmitt for comments on early versions of the 
manuscript. Last, but not least, it should be mentioned that the editors of 
the EATCS series, in particular, Prof. Brauer, and the team at Springer-Verlag 
helped me to publish this book. 

Kaiserslautern, September 2003 Klaus Schneider 



Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.1 Formal Methods in System Design ......................... 1 

1.1.1 General Remarks and Taxonomy.................... 1 
1.1.2 Classification of Formal Methods. . . . . . . . . . . . . . . . . . . . 4 
1.1.3 Classification of Systems ........................... 10 

1.2 Genealogy of Formal Verification .......................... 16 
1.2.1 Early Beginnings of Mathematical Logic. . . . . . . . . . . . . . 16 
1.2.2 Automated Theorem Proving ....................... 20 
1.2.3 Beginnings of Program Verification .................. 23 
1.2.4 Dynamic Logics and Fixpoint Calculi . . . . . . . . . . . . . . .. 24 
1.2.5 Temporal Logics. .. . .. . .. . .. .. . . .. . .. . .. . . .. . . .. . ... 28 
1.2.6 Decidable Theories and w-Automata . . . . . . . . . . . . . . . .. 33 
1.2.7 Summary.......................................... 38 

1.3 Outline of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 

2 A Unified Specification Language. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 
2.1 Kripke Structures as Formal Models of Reactive Systems. . . .. 45 

2.1.1 Simulation and Bisimulation of Kripke Structures. . . .. 53 
2.1.2 Quotient Structures........ ......................... 61 
2.1.3 Products of Kripke Structures. . . . . . . . . . . . . . . . . . . . . .. 66 

2.2 Syntax of the Specification Logic .cspec .•••••. . • . • . . • . • • . • • .• 68 
2.3 Semantics of the Specification Logic .cspec ••••••••.•.•••.•••• 77 
2.4 Normal Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 84 

3 Fixpoint Calculi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 89 
3.1 Partial Orders, Lattices and Fixpoints ...................... 90 
3.2 The Basic p,-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 98 
3.3 Monotonicity of State Transformers ........................ 103 
3.4 Model Checking of the Basic JL-Calculus .. . . . . . . . . . . . . . . . . .. 108 

3.4.1 A Naive Model Checking Procedure ................. 108 
3.4.2 Optimization by the Alternation Depth .............. 111 



XII Contents 

3.5 Vectorized p,-Calculus .................................... 118 
3.5.1 State Transformers of Vectorized Fixpoint Expressions. 119 
3.5.2 Decomposing Equation Systems. . . . . . . . . . . . . . . . . . . .. 124 
3.5.3 Model Checking Vectorized Fixpoint Expressions. . . .. 129 
3.5.4 Comparing Basic and Vectorized p,-Calculus Model 

Checking .......................................... 138 
3.5.5 Dependency-Triggered Evaluations .................. 142 
3.5.6 The Cleaveland-Steffen Algorithm ................... 148 

3.6 Reducing the Alternation Depth w.r.t. Structures ............ 159 
3.7 Computing Fair States .................................... 164 
3.8 Final Remarks on Completeness and Expressiveness. . . . . . . .. 169 

3.8.1 Bisimilarity and the Future Fragment ................ 169 
3.8.2 Relationship to w-Tree Automata and Games ......... 173 
3.8.3 Dynamic Logic ..................................... 175 

4 Finite Automata ............................................. 183 
4.1 Regular Languages, Regular Expressions and Automata ..... 186 
4.2 The Logic of Automaton Formulas . . . . . . . . . . . . . . . . . . . . . . . .. 189 
4.3 Boolean Closure ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 194 
4.4 Converting Automaton Classes . . . . . . . . . . . . . . . . . . . . . . . . . . .. 202 
4.5 Determinization and Complementation .................... 209 

4.5.1 The Rabin-Scott Subset Construction ................. 210 
4.5.2 Determinization of NDetF ........................... 213 
4.5.3 Determinization of NDetG ........................... 215 
4.5.4 Determinization of NDetFG .......................... 219 
4.5.5 Reducing NDetGF to DetRabin ................•...•.... 223 

4.6 The Hierarchy of w-Automata and the Borel Hierarchy ...... 236 
4.7 Automata and Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 252 

4.7.1 Finite Semigroups and Monoids ..................... 252 
4.7.2 Automata and Their Monoids . . . . . . . . . . . . . . . . . . . . . .. 257 

4.8 Decision Procedures for w-Automata ....................... 264 
4.8.1 Flattening w-Automata ............................. 265 
4.8.2 Translating £w Model Checking to £/1 Model 

Checking .......................................... 267 
4.8.3 Translating Automata to Vectorized p,-Calculus ...... 270 

5 Temporal Logics ............................................ 279 
5.1 Introduction .............................................. 279 
5.2 Branching Time Logics - Sublanguages of CTL * ....... . . . . .. 284 

5.2.1 CTL, LTL and CTL * ................................. 285 
5.2.2 Adding Syntactic Sugar to CTL ..................... 292 

5.3 Translating Temporal Logics to the p,-Calculus .............. 299 
5.3.1 CTL and FairCTL as Fragments of the p,-Calculus ..... 300 
5.3.2 CTL 2 as a Fragment of the p,-Calculus ............... 302 
5.3.3 Eliminating Quantified Boolean Expressions ......... 304 



Contents XIII 

5.3.4 Adding Path Quantifiers ........................... 310 
5.3.5 Translating LeftCTL * to Vectorized wCalculus . . . . . . .. 313 

5.4 Translating Temporal Logics to w-Automata ................ 329 
5.4.1 The Basic Translation from LTLp to NDetStreett ........ 331 
5.4.2 Exploitation of Monotonicity ....................... 343 
5.4.3 Borel Classes of Temporal Logic ..................... 348 
5.4.4 Reducing Temporal Borel Classes to Borel Automata.. 355 
5.4.5 Reductions to CTL / LeftCTL * Model Checking ....... 365 

5.5 Completeness and Expressiveness of Temporal Logic. . . . . . .. 375 
5.5.1 Noncounting Automata and Temporal Logic ......... 376 
5.5.2 Completeness of the Borel Classes ................... 383 
5.5.3 Completeness of the Future Fragments .............. 387 

5.6 Complexities of the Model Checking Problems. . . . . . . . . . . . .. 393 
5.7 Reductions by Simulation and Bisimulation Relations. . . . . . .. 400 

6 Predicate Logic .............................................. 405 
6.1 Introduction.............................................. 405 
6.2 Predicate Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 408 

6.2.1 Syntax and Semantics .............................. 408 
6.2.2 Basics of Predicate Logic ........................... 410 
6.2.3 Fragments with Decidable Satisfiability Problem. . . . .. 415 
6.2.4 Embedding Modal Logics in Predicate Logic ......... 421 
6.2.5 Predicate Logic on Linearly Ordered Domains (on IN) . 424 

6.3 Monadic Second Order Logic of Linear Order MSO< ........ 428 
6.3.1 Equivalence of SIS and MSO< ...................... 428 
6.3.2 Translating MSO< to w-Automata ................... 434 
6.3.3 Buchi's Decision Procedure: Normal Forms for SIS ... 439 

6.4 Monadic First Order Logic of Linear Order M FO < .......... 442 
6.5 Non-Monadic Characterizations ........................... 452 

7 Conclusions ................................................ 455 

A Binary Decision Diagrams ................................... 459 
Al Basic Definitions .......................................... 459 
A2 Basic Algorithms on BDDs. .. .. . .. . . .. . . .. .. .. .. . . .. . . .. . .. 466 
A3 Minimization of BDDs Using Care Sets . . . . . . . . . . . . . . . . . . . .. 471 
A4 Computing Successors and Predecessors ................... 477 
A5 Variable Reordering ....................................... 483 
A.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 486 

B Local Model Checking and Satisfiability Checking for the 
JL-Calculus ................................................. 487 
B.1 A Partial Local Model Checking Procedure ................. 488 
B.2 A Complete Local Model Checking Procedure .............. 493 
B.3 Satisfiability of wCalculus Formulas ....................... 500 



XIV Contents 

C Reduction of Structures . ..................................... 527 
C1 Galois Connections and Simulations. . . . . . . . . . . . . . . . . . . . . . .. 527 

Cl.1 Basic Properties of Galois Connections ............... 528 
Cl.2 Galois Simulation .................................. 531 

C2 Abstract Structures and Preservation Results ............... 534 
C3 Optimal and Faithful Abstractions ......................... 537 
C4 Data Abstraction ......................................... 542 

CA. 1 Abstract Interpretation of Structures . . . . . . . . . . . . . . . .. 544 
CA.2 Abstract Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 549 

C5 Symmetry and Model Checking ........................... 551 
C5.1 Symmetries of Structures ............................ 552 
C5.2 Symmetries in the Specification. . . . . . . . . . . . . . . . . . . . .. 557 

References . ..................................................... 561 

Index .......................................................... 591 


